B．Tech．Civil（Construction Management）／

 B．Tech．Civil（Water Resources Engineering）／ B．Tech．（Aerospace Engineering）Term－End Examination
ロロ19ア December， 2017

ET－102 ：MATHEMATICS－III

Time ： 3 hours

Maximum Marks ： 70

Note：Attempt any ten questions．All questions carry equal marks．Use of calculator is allowed．

1．Test the convergence of the series

$$
\frac{x}{2}+\frac{x^{2}}{5}+\ldots+\frac{x^{n}}{n^{2}+1}+\ldots
$$

for all values of \mathbf{x} ．

2．Show that the series
$\sum_{n} \frac{(-1)^{n-1}}{n^{p}}$
converges conditionally for $0<p \leq 1$ ． 7
ET－102
1
P．T．O．
3. Find half-range sine series for the function

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=\mathrm{x}(\pi-\mathrm{x}) \text { for } 0 \leq \mathrm{x} \leq \pi . \tag{7}
\end{equation*}
$$

4. If $w=\phi+i \psi$ represents the complex potential for an electric field and

$$
\psi=x^{2}-y^{2}+\frac{1}{x^{2}+y^{2}},
$$

determine the function ϕ.
5. Find the Laurent expansion of the function

$$
\begin{equation*}
f(z)=\frac{7 z-2}{(z+1) z(z+2)} \tag{7}
\end{equation*}
$$

in the annulus $|z+1|>3$.
6. Determine all the singularities and residues thereat of the function

$$
\begin{equation*}
f(z)=\left(z^{n} e^{1 / z}\right) /(1+z), n \in N . \tag{7}
\end{equation*}
$$

7. By integrating $\left[\left(\mathrm{e}^{\mathrm{iz}}\right) / \mathrm{z}\right]$ around a suitable contour, prove that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\sin x}{x} d x=\pi / 2 . \tag{7}
\end{equation*}
$$

8. For the conformal transformation $w=z^{2}$, show that
(i) Coefficient of magnification at $z=2+i$ is $2 \sqrt{5}$.
(ii) The angle of relation at $\mathrm{z}=2+\mathrm{i}$ is $\tan ^{-1}(0 \cdot 5)$.
(iii) The circle $|z-1|=1$ transforms into the cardioid $\rho=z(1+\cos \theta)$, where $w=\rho e^{i \theta}$ in the w-plane.
9. Evaluate :

$$
\mathcal{L}^{-1}\left[\frac{3 s-2}{s^{3}\left(s^{2}+4\right)}\right]
$$

10. Using Laplace transform, solve the differential equation

$$
y^{\prime \prime}-6 y^{\prime}+9 y=t^{2} e^{3 t}, \text { with } y(0)=2, y^{\prime}(0)=6 . \quad 7
$$

11. Use the tabular form of Hurwitz-Routh criterion for stability of the differential equation whose characteristic equation is

$$
\begin{equation*}
s^{4}+6 s^{3}+16 s^{2}+16 s+5=0 \tag{7}
\end{equation*}
$$

12. Solve :

$$
\left(x \sin \frac{y}{x}\right) d y=\left(y \sin \frac{y}{x}-x\right) d x
$$

ET-102
P.T.O.
13. Reduce the equation

$$
\left(2 x-10 y^{2}\right) d y+y d x=0
$$

to the linear form and find its solution.
14. Solve

$$
\begin{equation*}
\left(D^{2}+2\right) y=x^{2} e^{3 x}, \text { where } D \equiv \frac{d}{d x} \tag{7}
\end{equation*}
$$

15. Solve

$$
(z-y) p+(x-z) q=y-x,
$$

where $p=\frac{\partial z}{\partial x}$ and $q=\frac{\partial z}{\partial y}$.

