B．Tech．Civil（Construction Management）／

B．Tech．Civil（Water Resources Engineering）／
B．Tech．（Aerospace Engineering）／
BTCLEVI／BTMEVI／BTELVI／BTECVI／BTCSVI
ロロラ4？
Term－End Examination
December， 2017

ET－101（A）：MATHEMATICS－I

Time： 3 hours
Maximum Marks ： 70
Note：All questions are compulsory．Use of scientific calculator is allowed．

1．Answer any five of the following： $5 \times 4=20$
（a）Evaluate ：

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x \sin x}
$$

（b）If $\mathrm{x}=\cos (\ln \mathrm{y})$ ， show that $\left(1-x^{2}\right) y_{2}-x y_{1}=y$ ．
（c）If $y=a \sin \left(m \sin ^{-1} x\right)$ ， prove that
$\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}+\left(m^{2}-n^{2}\right) y_{n}=0$.
(d) If $f(x)$ be a function of real variable x, and $f(x)$ defined by

$$
\begin{aligned}
f(x) & =-x, \quad \text { when } x \leq 0 \\
& =x, \quad \text { when } 0<x<1 \\
& =2-x, \quad \text { when } x \geq 1,
\end{aligned}
$$

show that $f(x)$ is continuous at $x=0$ and also at $\mathrm{x}=1$.
(e) If $\mathrm{x}=\mathrm{r} \cos \theta, \mathrm{y}=\mathrm{r} \sin \theta, \mathrm{z}=\mathrm{z}$, find

$$
\frac{\partial(\mathrm{x}, \mathrm{y}, \mathrm{z})}{\partial(\mathrm{r}, \theta, \mathrm{z})}
$$

(f) If $\sin y=x \sin (a+y)$, prove that

$$
\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a}
$$

(g) The horsepower (H) developed by an aircraft travelling horizontally with velocity $\mathrm{V} \mathrm{m} / \mathrm{s}$ is

$$
\mathrm{H}=\frac{\mathrm{AW}}{}{ }^{2} \mathrm{~V}^{2}
$$

where A, B and W are constants, W representing the weight of the aircraft.
Find for what value of V the horsepower is minimum.
(h) Show that the semi-vertical angle of the cone of maximum volume and given slant height is $\tan ^{-1} \sqrt{2}$.
2. Answer any four of the following :
(a) Evaluate (any one):
(i) $\int \frac{1}{(3+x) \sqrt{1+x}} d x$
(ii) $\int \frac{x^{3}}{1+x^{8}} d x$
(b) Evaluate (any one) :
(i) $\int_{0}^{\pi / 2} \frac{\cos x}{\sin x+\cos x} d x$
(ii) $\int_{1}^{2} x^{2} \log x d x$
(c) Find the area included between the parabola $y^{2}=4 a x$ and its latus rectum.
(d) Find the surface area of a cone generated by the revolution of a line segment $y=2 x$ from $x=0$ to $x=2$ about the x-axis.
(e) Find the volume generated by revolving the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$, about the x-axis.
(f) Solve (any one) :
(i) $\frac{d y}{d x}=e^{x-y}+x^{2} e^{-y}$
(ii) $\tan y \frac{d y}{d x}+\tan x=\cos y \cos ^{2} x$
3. Answer any four of the following :
$4 \times 4=16$
(a) A particle moves along the curve $x=4 \cos t$, $y=4 \sin t$ and $z=6 t$. Find its velocity and acceleration at $\mathrm{t}=0$ and $\mathrm{t}=\pi / 2$.
(b) Find the directional derivative of the function $\phi=\mathrm{xyz}^{2}$ in the direction of the vector $2 \mathrm{i}+\mathrm{j}-\mathrm{k}$ at the point $(2,3,1)$.
(c) If $f(x, y, z)=3 x^{2} y-y^{3} z^{2}$, then find ∇f at the point (1, $-2,-1$).
(d) If $\overrightarrow{\mathbf{r}}=x \hat{i}+y \hat{j}+z \hat{k}$, then show that $\operatorname{div} \overrightarrow{\mathbf{r}}=3$.
(e) If $\overrightarrow{\mathbf{F}}=\left(x^{2}-y^{2}\right) \hat{i}+2 x y \hat{j}+\left(y^{2}-x y\right) \hat{k}$, then find $\nabla \cdot \overrightarrow{\mathbf{F}}$.
(f) A fluid motion is given by

$$
\overrightarrow{\mathbf{q}}=(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \hat{k}
$$

Is this motion irrotational? If so, find the velocity potential. Is the motion possible for an incompressible fluid?
4. Answer any six of the following :
(a) Find x, y, z and t, so that

$$
3\left[\begin{array}{ll}
x & y \\
z & t
\end{array}\right]=\left[\begin{array}{cc}
x & 6 \\
-1 & 2 t
\end{array}\right]+\left[\begin{array}{cc}
4 & x+y \\
z+t & 3
\end{array}\right]
$$

(b) If

$$
A=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
2 & 3 & 4
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & -2 \\
-1 & 0 \\
2 & -1
\end{array}\right]
$$

compute the product AB . Can the product be computed? If possible, find BA.
(c) Find the inverse of

$$
A=\left[\begin{array}{ccc}
2 & 1 & 1 \\
1 & -2 & -1 \\
3 & -1 & -4
\end{array}\right]
$$

and hence solve the equations :

$$
\begin{aligned}
& 2 x+y+z=11 \\
& x-2 y-z=-8 \\
& 3 x-y-4 z=-13
\end{aligned}
$$

(d) Find the rank of the matrix

$$
A=\left[\begin{array}{ccc}
6 & 1 & 3 \\
4 & 2 & 6 \\
10 & 3 & 9
\end{array}\right]
$$

(e) Show that

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]=
$$

$$
\left[\begin{array}{cc}
1 & -\tan \frac{\theta}{2} \\
\tan \frac{\theta}{2} & 1
\end{array}\right]\left[\begin{array}{cc}
1 & \tan \frac{\theta}{2} \\
-\tan \frac{\theta}{2} & 1
\end{array}\right]^{-1}
$$

(f) Find the eigenvalues of the matrix

$$
A=\left[\begin{array}{ccc}
5 & -1 & 0 \\
0 & -5 & 9 \\
5 & -1 & 0
\end{array}\right]
$$

(g) Verify that

$$
\frac{1}{3}\left[\begin{array}{ccc}
1 & -2 & 2 \\
-2 & 1 & 2 \\
-2 & -2 & -1
\end{array}\right]
$$

is an orthogonal matrix.
(h) If

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

choose α and β so that $[\alpha \mathrm{I}+\beta \mathrm{A}]^{2}=\mathrm{A}$.
Find α and β, where I is the unit matrix.

