B.Tech. - VIEP - Computer Science \& Engg. (BTCSVI) / B.Tech. Electronics and Communication Engg. (BTECVI) / B.Tech. Electrical Engg. (BTELVI)

ロロ319 Term-End Examination

December, 2017

BICE-007 : MATHEMATICS-III

Time: 3 hours
Maximum Marks : 70
Note: All questions are compulsory. Use of scientific calculator is permitted.

1. Answer any tivo of the following :
(a) If $u=e^{x}(x \cos y-y \sin y)$ is a harmonic function, find an analytic function $f(z)=u+i v$ such that $f(1)=e$.
(b) Expand $\frac{1}{z^{2}-3 z+2}$ in the region
(i) $|\mathrm{z}|<1$
(ii) $1<|z|<2$
(iii) $|z|>2$
(c) Evaluate the following integral using Cauchy's Integral formula :

$$
\begin{aligned}
& \int_{C} \frac{4-3 z}{z(z-1)(z-2)} d z, \text { where } C \text { is the circle } \\
& |z|=3 / 2
\end{aligned}
$$

2. Answer any two of the following :

$$
2 \times 7=14
$$

(a) Obtain the moment generating function of the random variable x having probability distribution

$$
f(x)=\left\{\begin{array}{cc}
x, & \text { for } 0<x<1 \\
2-x, & \text { for } 1 \leq x<2 \\
0, & \text { elsewhere }
\end{array}\right.
$$

Also determine mean and variance.
(b) Given the following experimental values:

x	0	1	2	3
y	2	4	10	15

Fit by the method of least squares, a parabola of the type $y=a+b x^{2}$.
(c) The lifetime of electric bulbs for a random sample of 10 from a large consignment gave the following data :

Item	Life in '000 Hours
1	$4 \cdot 2$
2	$4 \cdot 6$
3	3.9
4	$4 \cdot 1$
5	$5 \cdot 2$
6	$3 \cdot 8$
7	3.9
8	4.3
9	$4 \cdot 4$
10	$5 \cdot 6$

Can we accept the hypothesis that the average lifetime of a bulb is 4000 hours ?
3. Answer any two of the following : $2 \times 7=14$
(a) A manufacturer knows that the condensers he makes contain on an average 1% of defectives. He packs them in boxes of 100. What is the probability that a box picked at random will contain 4 or more faulty condensers?
(b) A set of five similar coins is tossed 320 times and the result is as follows :

No. of Heads	0	1	2	3	4	5
Frequency	6	27	72	112	71	32

Test the hypothesis that the data follows a binomial distribution. It is given that for $v=5, \Psi_{0.05}^{2}=11.07$.
(c) The following is the data of 10 samples of size 100 each. Construct NP-chart and give your comments.

Sample No.	No. of Defectives
1	6
2	9
3	12
4	5
5	7
6	8
7	8
8	16
9	13
10	7

BICE-007
4
4. Answer any two of the following :
(a) Find a positive real root of $x^{3}-4 x+1=0$ by the method of false position.
(b) Using Newton's forward interpolation formula, find the cubic polynomial and hence evaluate $f(0.5)$ by the following data :

x	0	1	2	3	4
$f(x)$	-1	0	13	50	123

(c) Given the data $f(1)=4, f(2)=5, f(7)=5$, $f(8)=4$. Compute $f(6)$ using Lagrange's interpolation formula.
5. Answer any two of the following :
(a) Solve the following system by Gauss-Seidel method, correct to two places of decimal :

$$
\begin{aligned}
& 10 x+2 y+z=9 \\
& 2 x+20 y-2 z=-44 \\
& -2 x+3 y+10 z=22
\end{aligned}
$$

(b) Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by using
(i) Simpson's $1 / 3^{\text {rd }}$ rule, (ii) Simpson's $3 / 8^{\text {th }}$ rule.
(c) Using Runge-Kutta method of fourth order, solve $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}$ with $y(0)=1$ at $x=0.2$ and $h=0 \cdot 1$.

