No. of Printed Pages: 6

BICE-007

B.Tech. – VIEP – Computer Science & Engg. (BTCSVI) / B.Tech. Electronics and Communication Engg. (BTECVI) / B.Tech. Electrical Engg. (BTELVI)

00319 Term-End Examination

December, 2017

BICE-007 : MATHEMATICS-III

Time : 3 hours

Maximum Marks: 70

Note: All questions are **compulsory**. Use of scientific calculator is permitted.

1. Answer any *two* of the following :

(a) If u = e^x (x cos y - y sin y) is a harmonic function, find an analytic function f(z) = u + iv such that f(1) = e.

(b) Expand $\frac{1}{z^2 - 3z + 2}$ in the region

(i) |z| < 1

(ii)
$$1 < |z| < 2$$

(iii) |z| > 2

BICE-007

1

P.T.O.

 $2 \times 7 = 14$

(c) Evaluate the following integral using Cauchy's Integral formula :

$$\int_{C} \frac{4-3z}{z(z-1)(z-2)} dz$$
, where C is the circle
 $|z| = 3/2$.

2. Answer any *two* of the following :

2×7=14

 (a) Obtain the moment generating function of the random variable x having probability distribution

 $f(x) = \begin{cases} x, & \text{for } 0 < x < 1 \\\\ 2 - x, & \text{for } 1 \le x < 2 \\\\ 0, & \text{elsewhere} \end{cases}$

Also determine mean and variance.

(b) Given the following experimental values :

x	0	1	2	3
у	2	4	10	15

Fit by the method of least squares, a parabola of the type $y = a + bx^2$.

BICE-007

(c)

The lifetime of electric bulbs for a random sample of 10 from a large consignment gave the following data :

Item	Life in '000 Hours	
1	4.2	
2	4.6	
3	3.9	
4	4.1	
5	5.2	
6	3.8	
7	3.9	
8	4·3	
9	4.4	
10	5.6	

Can we accept the hypothesis that the average lifetime of a bulb is 4000 hours?

3. Answer any *two* of the following :

- 2×7=14
- (a) A manufacturer knows that the condensers he makes contain on an average 1% of defectives. He packs them in boxes of 100. What is the probability that a box picked at random will contain 4 or more faulty condensers ?

BICE-007

P.T.O.

(b) A set of five similar coins is tossed 320 times and the result is as follows :

No. of Heads	0	1	2	3	4	5
Frequency	6	27	72	112	71	32

Test the hypothesis that the data follows a binomial distribution. It is given that for v = 5, $\psi_{0.05}^2 = 11.07$.

(c) The following is the data of 10 samples of size 100 each. Construct NP-chart and give your comments.

Sample No.	No. of Defectives		
1	6		
2	9		
3	. 12		
4	5		
5	7		
6	8		
7	8		
8	16		
9	13		
10	7		

BICE-007

4

Answer any *two* of the following : 4.

- $2 \times 7 = 14$
- Find a positive real root of $x^3 4x + 1 = 0$ (a) by the method of false position.
- Using Newton's forward interpolation **(b)** formula, find the cubic polynomial and hence evaluate f(0.5) by the following data :

x	0	1	2	3	4
f(x)	-1	0	13	50	123

(c) Given the data f(1) = 4, f(2) = 5, f(7) = 5, f(8) = 4. Compute f(6) using Lagrange's interpolation formula.

Answer any *two* of the following : 5.

2×7=14

(a) Solve the following system by Gauss-Seidel method, correct to two places of decimal :

> 10x + 2y + z = 92x + 20y - 2z = -44

-2x + 3y + 10z = 22

BICE-007

5

P.T.O.

- (b) Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by using
 - (i) Simpson's 1/3rd rule,

(ii) Simpson's 3/8th rule.

(c) Using Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with y(0) = 1 at x = 0.2

and h = 0.1.

BICE-007