B.Tech. (AEROSPACE ENGINEERING)

(BTAE)

Term-End Examination
December, 2017
BAS-008 : STRENGTH OF MATERIALS
Time : 3 hours
Maximum Marks : 70
Note: (i) Answer any five questions.
(ii) All questions carry equal marks.
(iii) Use of scientific calculator is permitted.
(iv) Assume missing data suitably.

1. (a) Derive an expression for maximum 7 deflection of a cantilever beam subjected to uniformly distributed load.
(b) Discuss Rankine theory and Tresca's theory 7 of elastic failure.
2. Establish a relationship to find the shear stress $7+\mathbf{7}$ across.
(a) An I-section.
(b) A circular section.

Determine the maximum value of shear stress in each case.
3. At a point in a strained material, the principal 14 streses are $100 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile), and $40 \mathrm{~N} / \mathrm{mm}^{2}$ (compressive). Determine the resultant stress in magnitude and direction on a plane inclined at 60° to the axis of the major principal stress. What is the maximum intensity of shear stress in the material at the point on the plane ?
4. A bolt is acted upon by an axial pull of 16 kN along with a transverse shear force of 10 kN . Determine the diameter of the bolt required according to the following theories of failure :
(a) Maximum shear stress theory
(b) Maximum principal strain theory

Take elastic limit of bolt to be 250 MPa , factor of safety as 2.5 and Poisson's ratio as 0.3 .
5. (a) Draw a stress-strain diagram for mild steel indicating the important points.
(b) A tapering rounding bar, whose diameter 10 is varying from d_{1} to d_{2}, is subjected to an axial load of P. If the length of the bar is L and Young's modulus of elasticity of the bar material is E , then prove that the total elongation of the bar is given by $\frac{4 \mathrm{PL}}{\pi E d_{1} \mathrm{~d}_{2}}$.
6. (a) Explain strain energy, resilience and proof resilience.
(b) A mild steel bar of diameter 30 mm and length 2.4 m is subjected to a tensile load of 90 kN . Find the strain energy stored in the bar, if the load is applied gradually. Also determine the modulus of resilience if proportional limit is 220 MPa .
Take $E=200 \mathrm{GN} / \mathrm{m}^{2}$
7. Write short notes on following :
$4 \times 31 / 2=14$
(a) Flitched beams
(b) Castigliano's first theorem
(c) Factor of safety
(d) Section modulus

