BAS-002

B.Tech. AEROSPACE ENGINEERING (BTAE) Term-End Examination

December, 2017

BAS-002 : APPLIED CHEMISTRY

TIMP. : 5 NOUTS	Time	: 3	hours	
-----------------	------	-----	-------	--

Maximum Marks : 70

Note: Attempt any seven questions. All questions carry equal marks use of scientific calculator is permitted.

1.	(a)	Calculate the shortest frequency of radiations in the Paschen Series.	5
	(b)	(i) What are the drawbacks of Bohr's Models ?	5
		(ii) If the electron in a hydrogen atom goes	
		from $n = 10$ state to ground state, a	
		photon will be emitted. Calculate the	
		wavelength of photon emitted.	
2.	(a)	Write the electronic configuration of the	3
2.	(a)	Write the electronic configuration of the following ions.	3
2.	(a)	•	3
2.	(a) (b)	following ions.	3 4
2.		following ions. ${}_{8}O^{2-}$, ${}_{29}Cu^{2+}$	
2.		following ions. 8 ^{O²⁻, 29Cu²⁺ Explain the following :}	
2.		following ions. ⁸ O ²⁻ , ²⁹ Cu ²⁺ Explain the following : (i) Fluorine has lower electron affinity	
2.		 following ions. 80²⁻, 29^{Cu²⁺} Explain the following : (i) Fluorine has lower electron affinity than chlorine. 	

BAS-002

- (c) Which has higher electron affinity and 3 why ?
 - (i) ${}_{6}C \text{ or } {}_{9}F$ (ii) ${}_{9}F \text{ or } {}_{53}I$
- 3. (a)

(i)

- "All inert gases are mono atomic". 2 Explain.
- (ii) Explain why $CuSO_4 \cdot 5H_2O$ is blue 2 whereas $ZnSO_4 \cdot H_2O$ is colourless.
- (b) Write the names of the following 6 complexes :
 - (i) $[Cr(NH_3)_3(NO_2)_3]$
 - (ii) $[Cr(H_2O)_4Cl_2]Cl$
 - (iii) [Co(NH₃)₅.H₂O]Cl₃
- 4. (a) Describe in brief the manufacture of HNO_3 4 from NH_3 by Ostwald's Process.
 - (b) Give reasons for the following :
 - (i) Sodium hydroxide flakes or pellets **3** should not be exposed to air
 - (ii) Brine is purified before being used in 3 manufacture of soda ash
- 5. (a) Define Eletrophiles and Nucleophiles. Give 5 two examples of each.
 - (b) (i) Explain what is meant by 'Coal tar' 5 and 'Coke'.
 - (ii) What is a Plasticizer ? What are its functions ?

BAS-002

2

- 6. (a)
- (i) Can you store copper sulphate solution in a zinc pot ? Explain.
- (ii) Draw a diagram of a Daniel cell and label it.
- (b) Two half cells are : Al³⁺ (aq)/Al and Mg²⁺ (aq)/mg The reduction potential of these half cells are -1.66 V and -2.36 V respectively. Calculate the cell potential and also write cell reaction.
- (a) Arrange the following hydrocarbons in the increasing order of their boiling points and explain.
 - (i) 2, 3-dimethylbutane
 - (ii) n-hexane
 - (iii) 2-methylpentane
 - (iv) 2, 2-dimethylbutane
 - (b) What do you mean by corrosion ? Explain 5 Electrical protection or Cathodic protection.
- **8.**
- (a) Write the characteristics of Equilibrium 5 constant.
- (b) The following concentrations were obtained 5 for the formation of NH_3 from N_2 and H_2 at equilibrium at 500 K, $[N_2(g)] = 1.5 \times 10^{-2} M$ $[H_2] = 3.0 \times 10^{-2} M$

3

 $[NH_3(g)] = 1.2 \times 10^{-2} M$ Calculate equilibrium constant.

BAS-002

5

5

5

- 9. (a) What is the effect of temperature and 5 concentration on the state of equilibrium of the following reaction ? $A+B \Rightarrow 2C+D+heat$
 - (b) Calculate the degree of dissociation of 5 0.01M solution of formic acid $(K_a = 2.1 \times 10^{-4} \text{ at } 298 \text{ K}).$