B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination
December, 2017

BAS-002 : APPLIED CHEMISTRY

Time : 3 hours Maximum Marks : 70
Note: Attempt any seoen questions. All questions carry equal marks use of scientific calculator is permitted.

1. (a) Calculate the shortest frequency of 5 radiations in the Paschen Series.
(b) (i) What are the drawbacks of Bohr's Models ?
(ii) If the electron in a hydrogen atom goes from $n=10$ state to ground state, a photon will be emitted. Calculate the wavelength of photon emitted.
2. (a) Write the electronic configuration of the following ions.
${ }_{8} \mathrm{O}^{2-} \cdot{ }_{29} \mathrm{Cu}^{2+}$
(b) Explain the following: 4
(i) Fluorine has lower electron affinity than chlorine.
(ii) Why does ionisation energy decrease from Be to B ?
(c) Which has higher electron affinity and 3 why ?
(i) ${ }_{6} \mathrm{C}$ or ${ }_{9} \mathrm{~F}$
(ii) ${ }_{9}{ }^{\mathrm{F}} \mathrm{or}_{53} \mathrm{I}$
3. (a) (i) "All inert gases are mono atomic". 2 Explain.
(ii) Explain why $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is blue 2 whereas $\mathrm{ZnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ is colourless.
(b) Write the names of the following 6 complexes :
(i) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]$
(ii) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
(iii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \cdot \mathrm{H}_{2} \mathrm{O}\right] \mathrm{Cl}_{3}$
4. (a) Describe in brief the manufacture of $\mathrm{HNO}_{3} \quad 4$
from NH_{3} by Ostwald's Process.
(b) Give reasons for the following :
$\begin{array}{lll}\text { (i) Sodium hydroxide flakes or pellets } & 3 \\ \text { should not be exposed to air }\end{array}$
5. (a) Define Eletrophiles and Nucleophiles. Give 5 two examples of each.
(b) (i) Explain what is meant by 'Coal tar' 5 and 'Coke'.
(ii) What is a Plasticizer ? What are its functions ?
6. (a) (i) Can you store copper sulphate solution in a zinc pot ? Explain.
(ii) Draw a diagram of a Daniel cell and label it.
(b) Two half cells are :

5
$\mathrm{Al}^{3+}(\mathrm{aq}) / \mathrm{Al}$ and $\mathrm{Mg}^{2+}(\mathrm{aq}) / \mathrm{mg}$ The reduction potential of these half cells are -1.66 V and -2.36 V respectively. Calculate the cell potential and also write cell reaction.
7. (a) Arrange the following hydrocarbons in the increasing order of their boiling points and explain.
(i) 2, 3-dimethylbutane
(ii) n-hexane
(iii) 2-methylpentane
(iv) 2, 2-dimethylbutane
(b) What do you mean by corrosion ? Explain 5
Electrical protection or Cathodic protection.
8. (a) Write the characteristics of Equilibrium 5 constant.
(b) The following concentrations were obtained 5 for the formation of NH_{3} from N_{2} and H_{2} at equilibrium at 500 K ,
$\left[\mathrm{N}_{2}(\mathrm{~g})\right]=1.5 \times 10^{-2} \mathrm{M}$
$\left[\mathrm{H}_{2}\right]=3.0 \times 10^{-2} \mathrm{M}$
$\left[\mathrm{NH}_{3}(\mathrm{~g})\right]=1.2 \times 10^{-2} \mathrm{M}$
Calculate equilibrium constant.
9. (a) What is the effect of temperature and concentration on the state of equilibrium of the following reaction ?
$A+B \rightleftharpoons 2 C+D+$ heat
(b) Calculate the degree of dissociation of 0.01 M solution of formic acid $\left(\mathrm{K}_{\mathrm{a}}=2.1 \times 10^{-4}\right.$ at 298 K).

