MCA (Revised)
Term-End Examination
$\square 714 \quad$ December, 2017

MCSE-004 : NUMERICAL AND STATISTICAL COMPUTING

Time: 3 hours
Maximum Marks : 100
Note: Question no. 1 is compulsory. Attempt any three questions from the rest. Use of calculator is allowed.

1. (a) Evaluate the sum $S=\sqrt{7}+\sqrt{5}+\sqrt{3}$ to 4 significant digits and find its absolute and relative errors. 5 5
(b) Use Lagrange's Interpolation formula to find the value of $\sin (\pi / 6)$ given by $y=\sin x . \quad 5$

x	0	$\pi / 4$	$\pi / 2$
$\mathrm{y}=\sin \mathrm{x}$	0	0.70711	1.0

(c) Determine the value of y when $x=0 \cdot 1$. Given that $y(0)=1$ and $y^{\prime}=x^{2}+y$. Use Euler's method.
(d) What are the pitfalls of Gauss Elimination method?
(e) Evaluate $\frac{\Delta^{2}}{E}\left(x^{3}\right)$.

$$
5
$$

(f) An individual's IQ score has a Normal distribution $\mathrm{N}\left(100,15^{2}\right)$. Find the probability that the individual's IQ score is between 91 and 121.
(g) Use Regula-Falsi method to find the roots of the equation $f(x)=x^{3}+x-1 . \quad 5$
(h) Calculate the value of the integral $\int_{4}^{5 \cdot 2} \log x d x$ by using
(i) Simpson's $1 / 3$ rule,
(ii) Simpson's $3 / 8$ rule.
2. (a) Using the data given below, perform the following tasks :

	Subject A	Subject B
Mean Marks	36	85
Standard Deviation	11	8

Coefficient of correlation between A and $B= \pm 0 \cdot 66$.
(i) Determine the two equations of regression.
(ii) Calculate the expected marks in A corresponding to 75 marks obtained in B.
(b) Using the Runge-Kutta method, find $\mathbf{y}(0 \cdot 2)$ for the equation $\frac{d y}{d x}=\frac{y-x}{y+x} ; y(0)=1$.

Take $\mathrm{h}=0 \cdot 2$.
wrestm
3. (a) Solve the following system of equations by using the Gauss Elimination method :

$$
\begin{aligned}
& x+2 y+z=3 \\
& 2 x+3 y+3 z=10 \\
& 3 x-y+2 z=13
\end{aligned}
$$

(b) Solve the following system of equations by using the LU decomposition method :

$$
x+y=2 ; 2 x+3 y=5
$$

(c) Use the Jacobi method to solve the following system of equations :

$$
\begin{aligned}
& 3 x+4 y+15 z=54 \cdot 8 \\
& x+12 y+3 z=39 \cdot 66 \\
& 10 x+y-2 z=7 \cdot 74
\end{aligned}
$$

4. (a) A thesis contains $\mathbf{1 0 0}$ misprints distributed randomly throughout its 100 pages. What is the probability that a page observed at random contains at least two misprints?
(b) The tangent of the angle between the lines of regression y on x and x on y is 0.6 and $\sigma_{\mathrm{x}}=\frac{1}{2} \sigma_{\mathrm{y}}$. Find r_{xy}.
(c) A polynomial passes through the points $(1,-1),(2,-1),(3,1)$ and $(4,5)$. Find the polynomial using Newton's forward interpolation.
(d) Find an approximate value of the root of the equation $x^{3}+x-1=0$, near $x=1$, using the Bisection method twice.
5. (a) Discuss the formulas for the following :
(i) Binomial distribution
(ii) Poisson distribution
(iii) Normal distribution
(b) If a bank receives on an average $\lambda=6 \mathrm{bad}$ cheques per day, what is the probability that it will receive 4 bad cheques on any given day?
(c) Given the values

x	$f(x)$
5	150
7	392
11	1452
13	2366
17	5202

Evaluate f(9) using
(i) Lagrange's formula, and
(ii) Newton's divided difference formula.

