BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

Term-End Examination
$\square \square 14 \square$
December, 2017

CS-60 : FOUNDATION COURSE IN MATHEMATICS IN COMPUTING

Time : 3 hours Maximum Marks : 75

Note: Question no. 1 is compulsory. Answer any three questions from questions no. 2 to 6. Use of calculator is permitted.

1. (a) Which of the collections mentioned below are sets?
(i) All good spin bowlers produced by Australia
(ii) All months in a calendar year
(iii) All natural numbers which are perfect cubes
(b) Provide an alternative property based definition of the set defined as

$$
\{x \mid 7 x+3=17\} .
$$

(c) Given ' x ' is real, find the minimum value of $\left(x+\frac{1}{x}\right)$.
(d) Solve the following equations graphically :

$$
x^{2}+y^{2}=1, \quad x+y=1
$$

(e) Show that the points $(-5,5) ;(7,10) ;(10,6)$ and $(-2,1)$ are the vertices of a parallelogram.
(f) Find the equation of the straight line having slope equal to ' 3 ' and passing through the point $(1,2)$.
(g) Find the centre and radius of the circle whose equation is $x^{2}+y^{2}+2 x+4 y+1=0$.
(h) Find the vertex, focus and the directrix of the parabola

$$
(y-2)^{2}=8(x-3) .
$$

(i) Find the direction cosines of the line joining the points ($1,1,2$) and ($-1,2,4$).
(j) Express 'i' as $\mathbf{r}(\cos \theta+\mathrm{i} \sin \theta)$.
(k) Find $\frac{d y}{d x}$, when $x=a \cos \theta, y=b \sin \theta$.
(1) Evaluate :

$$
\int e^{x}(\cos x+\sin x) d x
$$

(m) Find $\frac{d y}{d x}$, when $y=\log _{e} \sec x$.
(n) Evaluate :

$$
\int_{0}^{\pi / 2} \cos ^{2} x d x
$$

(o) Using the meaning of sign of $\frac{d y}{d x}$, explain
that $y=\tan x$ is an increasing function of x. Is there any restriction to the above? $15 \times 3=45$
2. (a) It is given that the Power Set $P(S)$ of any set S is the set of all subsets of S, including the empty set and the set S itself.
Show that the number of elements of $P(S)$ will be $2^{\text {n }}$, if the number of elements of the set S is n .
(b) For any two sets A and B in a universal set U , prove that

$$
(A \cup B)^{c}=A^{c} \cap B^{c} .
$$

(c) For what values of p and q will the quadratic equation $x^{2}+p x+q=0$ have
$(2+\sqrt{3})$ as one of its roots?
$3+3+4$
3. (a) If a, b, c, d are real quantities, and if

$$
\begin{aligned}
& a+i b=c+i d \\
& \text { prove that } a=c, b=d .
\end{aligned}
$$

(b) If $1, \omega, \omega^{2}$ are the cube roots of unity, find the value of $(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{4}\right)\left(1-\omega^{8}\right)$.
(c) If one root of the equation $a x^{2}+b x+c=0$ be four times the other, then show that $4 b^{2}=25 a c$.
4. (a) Find $\frac{d y}{d x}$, when
(i) $y=\tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right)$
(ii) $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$
(b) Evaluate :

$$
\int \frac{\mathrm{x}^{2}-1}{\mathrm{x}^{4}+1} \mathrm{dx} \quad 3+3+4
$$

5. (a) Find the condition under which the straight line $y=m x+c$ is a tangent to the parabola $y^{2}=4 a x$. Hence show that two mutually perpendicular tangents to the parabola would always meet on the directrix.
(b) Show that the normal at the point ($\mathrm{a} \sec \theta, \mathrm{b} \tan \theta$) of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is
$\mathrm{ax} \cos \theta+\mathrm{by} \cot \theta=\mathrm{a}^{2}+\mathrm{b}^{2}$.
6. (a) Find the ratio in which the line joining the points ($2,-3,5$) and ($7,1,3$) is divided by the xy-plane.
(b) Find the equation of the plane passing through the intersection of the planes $2 \mathrm{x}+\mathrm{y}+2 \mathrm{z}=9$ and $4 \mathrm{x}-5 \mathrm{y}-4 \mathrm{z}=1$ and the point (3, 2, -1).
(c) Find the equation of the sphere through the points $(0,0,0) ;(0,1,-1) ;(-1,2,0)$ and $(1,2,3)$. 3+3+4
