No. of Printed Pages: 5

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

Term-End Examination

00140

December, 2017

CS-60 : FOUNDATION COURSE IN MATHEMATICS IN COMPUTING

Time : 3 hours

Maximum Marks: 75

CS-60

- Note: Question no. 1 is compulsory. Answer any three questions from questions no. 2 to 6. Use of calculator is permitted.
- 1. (a) Which of the collections mentioned below are sets ?
 - (i) All good spin bowlers produced by Australia
 - (ii) All months in a calendar year
 - (iii) All natural numbers which are perfect cubes

CS-60

P.T.O.

(b) Provide an alternative property based definition of the set defined as

 $\{x \mid 7x + 3 = 17\}.$

- (c) Given 'x' is real, find the minimum value of $\left(x + \frac{1}{x}\right)$.
- (d) Solve the following equations graphically :

$$x^2 + y^2 = 1$$
, $x + y = 1$

- (e) Show that the points (-5, 5); (7, 10); (10, 6)and (-2, 1) are the vertices of a parallelogram.
- (f) Find the equation of the straight line having slope equal to '3' and passing through the point (1, 2).
- (g) Find the centre and radius of the circle whose equation is $x^2 + y^2 + 2x + 4y + 1 = 0$.
- (h) Find the vertex, focus and the directrix of the parabola

$$(y-2)^2 = 8(x-3).$$

- (i) Find the direction cosines of the line joining the points (1, 1, 2) and (-1, 2, 4).
- (j) Express 'i' as $r(\cos \theta + i \sin \theta)$.

CS-60

(k) Find
$$\frac{dy}{dx}$$
, when $x = a \cos \theta$, $y = b \sin \theta$.

(l) Evaluate :

$$\int e^{x} (\cos x + \sin x) dx$$

(m) Find
$$\frac{dy}{dx}$$
, when $y = \log_e \sec x$.

(n) Evaluate :

$$\int_{0}^{\pi/2} \cos^2 x \, \mathrm{d}x$$

(a), Using the meaning of sign of $\frac{dy}{dx}$, explain 3.1123 that y = tan x is an increasing function of x. Is there any restriction to the above ? $15 \times 3=45$

 (a) It is given that the Power Set P(S) of any set S is the set of all subsets of S, including the empty set and the set S itself.

Show that the number of elements of P(S) will be 2^n , if the number of elements of the set S is n.

(b) For any two sets A and B in a universal set U, prove that

$$(\mathbf{A} \cup \mathbf{B})^{\mathbf{c}} = \mathbf{A}^{\mathbf{c}} \cap \mathbf{B}^{\mathbf{c}}.$$

CS-60

P.T.O.

- (c) For what values of p and q will the quadratic equation $x^2 + px + q = 0$ have $(2 + \sqrt{3})$ as one of its roots? 3+3+4
- 3. (a) If a, b, c, d are real quantities, and if a + ib = c + id, prove that a = c, b = d.
 - (b) If 1, ω , ω^2 are the cube roots of unity, find the value of $(1 - \omega) (1 - \omega^2) (1 - \omega^4) (1 - \omega^8)$.
 - (c) If one root of the equation $ax^2 + bx + c = 0$ be four times the other, then show that $4b^2 = 25ac.$ 3+4+3
 - 4. (a) Find $\frac{dy}{dx}$, when

(i)
$$y = \tan^{-1}\left(\frac{\cos x - \sin x}{\cos x + \sin x}\right)$$

(ii)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

(b) Evaluate :

$$\frac{x^2-1}{x^4+1}\,dx$$

3+3+4

CS-60

- 5. (a) Find the condition under which the straight line y = mx + c is a tangent to the parabola $y^2 = 4ax$. Hence show that two mutually perpendicular tangents to the parabola would always meet on the directrix.
 - (b) Show that the normal at the point (a sec θ , b tan θ) of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $ax \cos \theta + by \cot \theta = a^2 + b^2$.

6. (a) Find the ratio in which the line joining the points (2, -3, 5) and (7, 1, 3) is divided by the xy-plane.

- (b) Find the equation of the plane passing through the intersection of the planes 2x + y + 2z = 9 and 4x 5y 4z = 1 and the point (3, 2, -1).
- (c) Find the equation of the sphere through the points (0, 0, 0); (0, 1, -1); (-1, 2, 0) and (1, 2, 3).

CS-60

2,500

5+5