POST GRADUATE DIPLOMA IN APPLIED STATISTICS (PGDAST)

Term-End Examination

December, 2016

MSTL-002/S2 : INDUSTRIAL STATISTICS LAB SET-2

Time: 3 Hours

Maximum Marks : 50
Note: (i) Attempt any two questions.
(ii) Solve the questions in Microsoft Excel.
(iii) Use of Formulae and Statistical Tables Booklet for PGDAST is allowed.
(iv) Mention necessary steps, hypotheses, interpretation, etc.

1. (a) The following data related to the life (in hours) of $\mathbf{1 5}$ random samples of 5 electric bulbs each, drawn at intervals of one hour from a production process :

Sample Number	Life-times (in hours)				
	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
1	1620	1685	1660	1760	1800
2	1501	1585	1525	1590	1650
3	1675	1702	1686	1567	1625
4	1650	1625	1572	1630	1640
5	1500	1980	1659	1643	1660
6	1634	1755	1625	1690	1770
7	1635	1723	1614	1535	1550
8	1482	1791	1533	1619	1497
9	1706	1524	1625	1504	1670
10	1530	1432	1380	1690	1724
11	1490	1500	1605	1595	1650
12	1590	1535	1762	1590	1625
13	1460	1490	1635	1587	1555
14	1722	1608	1665	1590	1530
15	1470	1409	1650	1590	1550

Draw the $\overline{\mathrm{X}}$ and R charts and comment whether the process is under control. If not, draw the revised charts.
(b) The data given below represent the number of defects noted per 100 metres in a telephone cable :

Sample No.	No. of Defects	Sample No.	No. of Defects
1	10	11	8
2	5	12	6
3	13	13	9
4	2	14	11
5	19	15	15
6	24	16	8
7	1	17	3
8	1	18	6
9	3	19	7
10	7	20	4

Analyse the data with a suitable chart. Would you conclude that the process is in statistical control? If not, draw the revised chart.
2. The data given below gives the average monthly prices of a commodity for four years :

Month	Year			
	2000	2001	2002	2003
January	180	200	220	240
February	200	220	190	240
March	180	190	200	220
April	170	180	180	200
May	150	160	170	180
June	160	200	180	220
July	170	240	240	250
August	190	230	250	260
September	210	230	260	270
October	230	240	240	260
November	230	240	250	270
December	240	260	270	290

(a) Calculate the seasonal variation indices using moving average method.
(b) Obtain the deseasonalised values.
(c) Estimate the trend line by method of least squares.
(d) Plot the given data and the deseasonalised values.
3. A study was conducted to examine those variables which are thought to be related to the job satisfaction of employees of a non-professional organisation. A random sample of 15 employees is selected and the data are given below :

Score on Job Satisfaction Test	Coded Intelligence Score	Index of Personal Adjustment
54	15	8
37	13	1
30	15	1
48	15	7
37	10	4
37	14	2
31	12	3
49	1	7
43	3	9
12	15	1
30	14	1
37	9	2
61	8	10
31	4	1
31		5

(a) Prepare a matrix plot to get an idea about the relationship among the variables.
(b) Develop a regression model and perform its analysis at 5% level of significance.
(c) Check linearity and normality assumptions for the fitted regression model.

