No. of Printed Pages: 3

MMTE-006

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination

December, 2016

MMTF-006 - CDVDTOCDADUV

WINTE-DOO. CHIFTOGNAPHY		
Tir	ne : 2	Phours Maximum Marks: 50
No	ote: Question no. 6 is compulsory. Answer any four questions from questions no. 1 to 5. Only non-programmable calculators are allowed.	
1.	(a)	Define Euler's Phi function and find $\phi(80)$. 2
	(b)	Find 5^{24} (mod 8) using the repeated squaring algorithm.
	(c)	Describe the Merkle-Damgård method and the Davies-Meyer method. Also explain how these methods can be used to construct cryptographic hash functions. 4
2.	(a)	Explain the key expansion process in AES-128.
	(b)	Encrypt the plain text
		"INDIANEEDSWOMENLIKEYOUTOWINYYY"
		using the permutation cipher with 53124
		as the key.

- (c) Compute the discrete logarithm and the discrete antilogarithm to the base 3 in \mathbf{Z}_{17}^* .
- (a) Explain the key-scheduling algorithm of the RC4 cipher along with its pseudocode.
 - (b) Use the Miller-Rabin test to check whether1889 is composite or not.
- 4. (a) Decrypt the ciphertext C = 8, which is obtained by the RSA system with public key (e, n) = (13, 33).
 - (b) Find the inverse of $(1 + x^2)$ in $R = F_2[x] / < 1 + x + x^4 >$. Also, is $1 + x + x^4$ invertible in R? Give reasons for your answer.

5

5

- 5. (a) Find the result of multiplying $f(x) = 1 + x + x^2 + x^4 + x^6 \text{ with}$ $g(x) = 1 + x + x^4$ $\mod m(x) = 1 + x + x^3 + x^4 + x^8 \text{ in } \mathbf{F}_2[x].$
 - (b) Solve the equation $10^x \equiv 52 \pmod{59}$ using the Baby-Step Giant-Step algorithm.

- 6. Which of the following statements are *True*, and which are *False*? Give reasons for your answers.
- *10*
- (a) The symmetric key cryptosystems have no drawbacks.
- (b) There is no field with characteristic 9.
- (c) Diffusion is achieved by using an S-box in DES.
- (d) 257 is a strong prime.
- (e) Given a sequence of bits, the frequency test suffices to check the randomness of the sequence.