M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

Term-End Examination
December, 2016

MMTE-005 : CODING THEORY

Time : 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note: Answer any four questions from questions no. 1 to 5. Question no. 6 is compulsory. Use of calculator is not allowed.

1. (a) Define 'linear code', and give an example with justification.
(b) Prove that a binary repetition code of odd length is a perfect code.
(c) Let $\alpha=x+F_{2}[x] /\left\langle x^{3}+x+1\right\rangle$. Make a table that gives the powers of α as a linear combination of $1, \alpha$ and α^{2}. Use it to write $\left(\alpha^{5}-\alpha^{2}+1\right)(\alpha+1) /\left(\alpha^{2}+1\right)$ as a linear combination of $1, \alpha$ and α^{2}.
2. (a) Compute the 3-cyclotomic cosets modulo 7.
(b) Find the generator matrix and the parity check matrix for the binary cyclic code of length 7 with generator polynomial $\left(x^{3}+x+1\right)$.
(c) Let C be a cyclic code over \mathbf{F}_{q} with generating idempotent $e(x)$. Prove that the generator polynomial of C is
$g(x)=\operatorname{gcd}\left(e(x), x^{n}-1\right)$ computed in $F_{q}[x]$.
3. (a) Let C be a $[15,7]$ narrow-sense binary BCH code of designed distance $\delta=5$, which has the defining set $T=\{1,2,3,4,6,8,9,12\}$. Using the primitive $15^{\text {th }}$ root of unity α, where $\alpha^{4}=1+\alpha$, the generator polynomial of C is $g(x)=1+x^{4}+x^{6}+x^{7}+x^{8}$. Suppose C is used to transmit a code word and $y(x)=x^{6}+x^{10}+x^{12}$ is received. Find the transmitted code word.
You may use the following table :

0000	0	1000	α^{3}	$1011 \alpha^{7}$	$1110 \alpha^{11}$
0001	1	0011	α^{4}	$0101 \alpha^{8}$	1111
α^{12}					
0010	α	0110	α^{5}	$1010 \alpha^{9}$	1101
α^{13}					
0100	α^{2}	1100	α^{6}	0111	α^{10}

(b) Construct the generating idempotents of the duadic codes of length 7 over \mathbf{F}_{4}.
4. (a) Let C be the [5,2] binary code generated by

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

(i) Find the weight distribution of C .
(ii) Find the weight distribution of C^{\perp} by using the Mac-Williams identity.
(b) Let \mathbf{C} be the \mathbf{Z}_{4}-linear code of length 3 with generator matrix

$$
\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3
\end{array}\right] .
$$

(i) List the 16 code words in C .
(ii) List the 16 code words in the Gray image of C.
5. (a) Let C be the $(2,1)$ convolutional code with generator matrix [1 $1+\mathrm{D}]$. Prove that the code C has free distance 3.
(b) (i) Explain the Tanner graph of a code. 2
(ii) Let C be the $[7,4,2]$ binary code with parity-check matrix.

$$
\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right] .
$$

Give the Tanner graph of this code.
6. Which of the following statements are True, and which are False? Justify your answers.
(a) $\quad 5^{10} \equiv 1(\bmod 10)$.
(b) If C is an $[\mathrm{n}, \mathrm{k}]$-code with parity-check matrix P, then any two words x, y in C have the same syndrome only if $x=y$.
(c) If x and y are two code words in an LDPC code, with the minimum distance between them being less than 1 , then x and y will differ in only one component.
(d) The dimension of a code C is the same as the dimension of the dual of C .
(e) The minimum distance of any code is its error-coding capability.

