M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination
December, 2016
DTVロ4

MMTE-004 : COMPUTER GRAPHICS

Time: 2 hours
Maximum Marks : 25
(Weightage : 50\%)
Note: Question no. 1 is compulsory. Attempt any three questions out of questions no. 2 to 5 . Use of calculator is not allowed.

1. State whether the following statements are True or False. Justify your answers.

$$
5 \times 2=10
$$

(a) The height of the resized image 1024×768 to one that is 640 pixels wide with the same aspect ratio is 480 .
(b) The Cohen-Sutherland algorithm fails to clip a line if it is vertical and partly lying within the window.
(c) If R is a rotation matrix by an angle θ about the origin, then $R-\theta=R_{\theta} R_{\theta}^{-1}$.
(d) A triangle cannot be mapped to any arbitrary triangle using scaling transformation.
(e) There can be only one principal vanishing point in a projected image.
2. (a) Use Bresenham's algorithm for scan converting a line from pixel coordinate $(1,1)$ to pixel coordinate $(8,5)$. Also plot the line.
(b) Transform the scene in the world coordinate system to the viewing coordinate system with the view point at $(2,2,2)$. The view plane normal vector is $(-1,-1,-1)$ and the view up vector is $(0,1,0)$.
3. (a) Find the transformation matrix that reduces the square $A B C D$, whose centre is at (2,2), to half its size with centre still remaining at (2,2). The coordinates of square ABCD are $\mathrm{A}(0,0), \mathrm{B}(0,4), \mathrm{C}(4,4)$ and $D(4,0)$. Find the coordinates of the new square.
(b) Consider a rectangle with vertices as (0,0), $(1,0)(1,1),(0,1)$. Plot the output after executing the following code segment on the given rectangle :

$$
\begin{aligned}
& \text { glTranslate }(-0.5,-0.5,0) \\
& \text { glRotate }\left(45^{\circ}, 0.0,0 \cdot 0,1 \cdot 0\right) \\
& \text { glScaled }(2,2,1)
\end{aligned}
$$

4. Suppose R be the window which has its lower left corner at $(-3,1)$ and upper right corner at $(2,6)$. For each of the following line segments, state whether it is visible, invisible or partially visible :
(a) $(-4,2)$ to $(-1,7)$
(b) $(-1,5)$ to $(3,8)$
(c) $(-2,3)$ to $(1,2)$
(d) $(1,-2)$ to $(3,3)$
(e) $(-4,7)$ to $(-2,10)$

If the line segment is partially visible, find the points of intersection with the window.
5. Plot an ellipse, with centre at the origin having semi-major axis of 4 units and semi-minor axis of 3 units, using midpoint ellipse algorithm. Assume the initial point to be (0,3).

