M.Sc. (MATHEMATICS WITH APPLICATIONS

IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination
पロБ $\boxed{4}$ December, 2016

MMTE-001: GRAPH THEORY

Time: 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note: Question no. 1 is compulsory. Answer any four out of the remaining five (questions no. 2 to 6) questions. Calculators are not allowed.

1. State, with justification or illustration whether each of the following statements [(a) to (e)] is True or False.

$$
5 \times 2=10
$$

(a) Every graph with n vertices and k edges has at least $\mathrm{n}-\mathrm{k}$ components.
(b) There are graphs G with diam $\mathrm{G}=\operatorname{rad} \mathrm{G}$.
(c) Every complete graph has a perfect matching.
(d) If G is a graph with two non-adjacent vertices u and v and $G+u v$ is Hamiltonian, then G is Hamiltonian.
(e) If G is a simple graph with $\zeta(G) \leq 3 n(G)-6$, then G is planar.
2. (a) Determine which pairs of graphs given below are isomorphic. Justify your answer.

(b) Prove that an edge e in a graph G is a cut-edge if and only if e belongs to no cycle in G.
(c) Prove that every even graph decomposes into cycles.
3. (a) Prove that if a set $\left\{d_{1}, d_{2}, d_{3}, \ldots d_{n}\right\}$ of non-negative integers represents the degrees of vertices in a graph then, $\sum_{i=1}^{n} d_{i}$ is even and $d_{i} \leq n-1$, for each $\mathrm{i}=1, \ldots, \mathrm{n}$. Is the converse true ? Justify your answer.
(b) Find the values of n for which $K_{n, n}$ is Hamiltonian. Justify your answer.
(c) If G is a self-complementary graph of order $\mathrm{n}>1$, then prove that $\operatorname{diam}(\mathrm{G})=3$.
4. (a) The number of leaves in any tree of order n,

$$
\mathrm{n} \geq 1 \text {, is } 1+\frac{1}{2} \sum_{\mathrm{v} \in \mathrm{~V}(\mathbf{G})}|\mathrm{d}(\mathrm{v})-2| \text {. }
$$

(b) For every graph G, prove that

$$
\begin{equation*}
\chi(\mathrm{G}) . \alpha(\mathrm{G}) \geq \mathrm{n}(\mathrm{G}) . \tag{3}
\end{equation*}
$$

(c) Find a maximum matching in the following graph. Justify your answer.

5. (a) Use Dijkstra's algorithm to find the shortest paths from vertex a to all other vertices, sharing all the necessary steps.

(b) For any graph G, prove that

$$
\begin{equation*}
\alpha(G)+\beta(G)=n(G) \tag{3}
\end{equation*}
$$

(c) Construct a simple cubic graph having no 1-factor. 3
6. (a) Prove that $K(G) \leq K^{\prime}(G) \leq \delta(G)$ for any simple graph G and construct a graph for which $K(G)=1, K^{\prime}(G)=2$ and $\delta(G)=3$.
(b) Using Mycielski's construction, produce a 4-chromatic graph from C_{5}.

