M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

Term-End Examination
$\square \square ム 凸$ December, 2016

MMT-007 : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time : 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note: Question no. 1 is compulsory. Attempt any four questions out of the remaining questions no. 2 to 7. All computations may be kept to three decimal places. Use of calculators is not allowed.

1. State whether the following statements are True or False. Justify your answers with the help of a short proof or a counter-example.
$5 \times 2=10$
(a) For the differential equation $x^{2}(x-4)^{2} y^{\prime \prime}(x)+3 x y^{\prime}(x)-(x-4) y=0$, $x=0$, is a regular singular point and $x=4$, is an irregular singular point.
(b) x^{2} when expanded into a series of Legendre's polynomial, yields

$$
\frac{2}{3} P_{2}(x)+\frac{1}{2} P_{0}(x) .
$$

- (c) The Runge-Kutta method of second order is nothing but the modified Euler's method.
(d) The Laplace transform of the following convolution integral $\int_{0}^{t}(t-\beta)^{3} e^{\beta} d \beta$ equals $\left[6 / s^{4}(s+1)\right]$.
(e) The explicit scheme;

$$
u_{i}^{n+1}=u_{i}^{n}+\lambda\left[u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right]
$$

where $\lambda=\mathrm{k} / \mathrm{h}^{2}$, for solving the parabolic equation $u_{t}=u_{x x}$ is stable for $\lambda<1$.
2. (a) Using Laplace transform technique, solve the following initial value problem:

$$
\begin{aligned}
& \frac{d x}{d t}+\frac{d y}{d t}=t, \quad \frac{d^{2} x}{d t^{2}}-y=e^{-t} \\
& x(0)=0, y(0)=0, \frac{d x}{d t}=0, \text { for } t=0
\end{aligned}
$$

(b) Using the recurrence relation $(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x)$,
prove that

$$
\begin{equation*}
(2 n+1)^{2} \int_{-1}^{1} x^{2} P_{n}^{2}(x) d x=\frac{2(n+1)^{2}}{(2 n+3)}+\frac{2 n^{2}}{(2 n-1)} \tag{4}
\end{equation*}
$$

3. (a) Solve the following differential equation by power series method about $x=0$:

$$
\left(1-x^{2}\right) y^{\prime \prime}(x)-2 x y^{\prime}(x)+2 y^{\prime}(x)=0 .
$$

(b) Find the Fourier sine transform of

$$
f(x)=\left\{\begin{array}{cc}
x, & 0<x<1 \tag{5}\\
2-x, & 1<x<2 \\
0, & x>2
\end{array}\right.
$$

4. (a) Given $\frac{d y}{d x}=x-y^{2}, y(0.2)=(0.02)$. Find $y(0.4)$ by using modified Euler's method, correct to two decimal places, taking $\mathrm{h}=0.2$. 5
(b) Determine an appropriate Green's function either by using the method of variation of parameters or otherwise, for the following boundary value problem :

$$
-\left(y^{\prime \prime}(x)-y(x)\right)=\frac{2}{1+e^{-x}}, y(0)=y(1)=0 .
$$

5. (a) Find the solution of the initial boundary value problem $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial \mathbf{x}^{2}}, 0 \leq x \leq 1$ $u(x, 0)=\sin \pi x, 0 \leq x \leq 1$ $\frac{\partial u}{\partial t}(x, 0)=0$,
$u(0, t)=u(1, t)=0, t>0$ by using second order explicit method with $\mathrm{h}=\frac{1}{4}, \mathrm{r}=\frac{1}{3}$.
Integrate for one time step.
(b) Prove that

$$
\frac{d}{d x}\left(J_{n}^{2}(x)\right)=\frac{x}{2 n}\left[J_{n-1}^{2}(x)-J_{n+1}^{2}(x)\right] .
$$

(c) Given

$$
\frac{d y}{d x}=-300 y, y(0)=1 .
$$

Determine the value of h so that the second order Runge-Kutta method applied to the IVP produces stable results.
6. (a) Find the Laplace inverse transform of

$$
\begin{equation*}
\mathrm{F}(\mathrm{~s})=\ln \left(1+\frac{1}{\mathrm{~s}^{2}}\right) \tag{4}
\end{equation*}
$$

(b) Using Milne's fourth order predictor-corrector method find $y(2)$, given

$$
\frac{d y}{d x}=\frac{1}{2}(x+y), y(0)=2,
$$

where $y(0 \cdot 5)=2 \cdot 636, y(1)=3 \cdot 595$,
$y(1 \cdot 5)=4 \cdot 968$. Perform two corrector iterations.
7. (a) Solve the Poisson's equation

$$
\frac{\partial^{2} u}{\partial \mathbf{x}^{2}}+\frac{\partial^{2} \mathbf{u}}{\partial \mathbf{y}^{2}}=2 \mathbf{x}^{2} \mathbf{y}^{2}
$$

over the square mesh domain $0 \leq x \leq 3$ and $0 \leq y \leq 3$ with $u=0$, on the boundary and $h=k=1$. Use five-point formula.
(b) For the boundary value problem

$$
\frac{d^{2} y}{d x^{2}}=e^{x^{2}} ; y(0)=0, y(1)=0
$$

estimate, using second order finite difference method the values of $y(x)$ at $x=0.25,0.5$ and 0.75
(given $\mathrm{e}^{\left(\frac{1}{2}\right)^{2}}=1.2840, \mathrm{e}^{\left(\frac{1}{4}\right)^{2}}=1.0645$, $\left.e^{\left(\frac{3}{4}\right)^{2}}=1.7551\right)$.

