No. of Printed Pages : 3

MMT-005

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

D1114 December, 2016

MMT-005 : COMPLEX ANALYSIS

Time : $1\frac{1}{2}$ hours

Maximum Marks : 25

- Note: Question no. 1 is compulsory. Attempt any three questions from questions no. 2 to 5. Use of calculator is **not** allowed.
- 1. State giving reasons whether the following statements are *True* or *False*: $5\times 2=10$
 - (a) $f(z) = \overline{z} \quad \forall z \in C$ is nowhere differentiable.
 - (b) $e^z, z \in C$ has periodicity $2\pi i$.
 - (c) The radius of convergence of the power series $\sum_{n=0}^{\infty} \{3 + (-1)^n\} (z-2)^n$ is at least 1.

MMT-005

P.T.O.

(d)
$$\int_{|z|=3/2} \frac{1}{z^2-1} dz = 2\pi i.$$

(e)
$$\operatorname{Res}_{z=0} \left[\frac{1-\cos z}{z^3} \right] = \frac{1}{2}.$$

2. (a) Evaluate $\int_C \frac{1}{z} dz$, where C is the circle,

 $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$.

(b) Determine the linear fractional transformation that maps $z_1 = 0$, $z_2 = 1$, $z_3 = \infty$ onto $w_1 = -1$, $w_2 = -i$, $w_3 = 1$, respectively.

3.

(a)

Let 0 < |a| < |b|. Evaluate $\int \frac{dz}{(z-a)(z-b)}$

where |a| < r < |b|.

(b) Find the Laurent series of $f(z) = \frac{1}{z^3 - z^4}$

about z = 0.

MMT-005

2

2

3

2

3

4. (a) Verify that the function u(x, y) = e^x cos y + x is harmonic in the entire complex plane and find the harmonic conjugate function of u.

 $| f(z) | < | z |^2$ throughout the annulus.

$$\int \frac{dx}{(1+x^2)^{n+1}} = \pi \frac{1.3.5...(2n-1)}{2.4.6...(2n)}$$

for all $n \in N$.

00

5

3

2