M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

$\square 1114$ December, 2016

MMT-005 : COMPLEX ANALYSIS

Time : $1 \frac{1}{2}$ hours
Maximum Marks : 25

Note: Question no. 1 is compulsory. Attempt any three questions from questions no. 2 to 5 . Use of calculator is not allowed.

1. State giving reasons whether the following statements are True or False : $\quad 5 \times 2=10$
(a) $\mathrm{f}(\mathrm{z})=\overline{\mathbf{z}} \forall \mathrm{z} \in \mathbf{C}$ is nowhere differentiable.
(b) $\mathrm{e}^{\mathrm{z}}, \mathrm{z} \in \mathbf{C}$ has periodicity $2 \pi \mathrm{i}$.
(c) The radius of convergence of the power series $\sum_{n=0}^{\infty}\left\{3+(-1)^{n}\right\}(z-2)^{n}$ is at least 1 .
(d) $\quad \int \frac{1}{z^{2}-1} d z=2 \pi i$.

$$
|z|=3 / 2
$$

(e) $\operatorname{Res}_{z=0}\left[\frac{1-\cos z}{z^{3}}\right]=\frac{1}{2}$.
2. (a) Evaluate $\int_{C} \frac{1}{z} \mathrm{dz}$, where C is the circle,

$$
x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi .
$$

(b) Determine the linear fractional transformation that maps $\mathrm{z}_{1}=0, \mathrm{z}_{2}=1$, $z_{3}=\infty$ onto $w_{1}=-1, w_{2}=-i, w_{3}=1$, respectively.
3. (a) Let $0<\mid$ a $|<|$ b \mid. Evaluate

$$
\int_{|z|=r} \frac{d z}{(z-a)(z-b)}
$$

where \mid a $|<r<|b|$.
(b) Find the Laurent series of $f(z)=\frac{1}{z^{3}-z^{4}}$ about $\mathrm{z}=0$.
4. (a) Verify that the function $u(x, y)=e^{x} \cos y+x$ is harmonic in the entire complex plane and find the harmonic conjugate function of u.
(b) Suppose f is analytic in the annulus $1<|z|<2$ where $|f|<1$ on $|z|=1$ and $|\mathrm{f}|<4$ on $|\mathrm{z}|=2$. Prove that
$|f(z)|<|z|^{2}$ throughout the annulus.
2
5. Show that

$$
\int_{-\infty}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{n+1}}=\pi \frac{1.3 .5 \ldots(2 n-1)}{2.4 .6 \ldots(2 n)}
$$

for all $\mathbf{n} \in \mathbf{N}$.

