No. of Printed Pages : 5

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination

00984 December, 2016

MMT-004 : REAL ANALYSIS

Time : 2 hours

Maximum Marks : 50

(Weightage : 70%)

MMT-004

- Note: Question no. 1 is compulsory. Attempt any four questions out of questions no. 2 to 7. Calculators are **not** allowed.
- 1. State whether the following statements are *True* or *False*. Give reasons for your answers. $5 \times 2 = 10$
 - (a) $\{0\} \cup \{\frac{1}{n} \mid n = 1, 2, 3, ...\}$ is a compact set in **R**.
 - (b) $\mathbf{R}^2 \setminus \{(1, a) : a \in \mathbf{R}\}$ has two components.
 - (c) The function $f: \mathbb{R}^2 \to \mathbb{R}^2$ given by $f(x, y) = (x^2 - y^2, 2xy)$ is locally invertible at every point of \mathbb{R}^2 except at (0, 0).

MMT-004

P.T.O.

(d) The function f: R³ → R² defined by f(x₁, x₂, x₃) = (x₁ sin 1/x₁, x₂ - x₃) is continuously differentiable in R³.
(e) For f, g ∈ L¹ ([a, b]), || f - g || defined as b

 $|| f - g || = \int_{a}^{b} (f(x) - g(x)) dx$ is a metric on L¹([a, b]).

- (a) Is an arbitrary union of closed sets closed ? Justify your answer.
 - (b) Find the stationary points of the function $f: \mathbb{R}^3 \to \mathbb{R}$ given by

 $f(x, y, z) = (x + y + z)^3 - 3(x + y + z) - 24xyz$ and check whether they are local extreme points. 2

5

3

- (c) When is a set said to be measurable? Show that the intersection of two measurable sets is measurable.
- 3. (a) Let X be a metric space and $f: X \to Y$ be a function such that for every closed set $V \subset Y$, its inverse image $f^{-1}(V)$ is closed in X. Then show that f is continuous.

MMT-004

- (b) Let E be the open set such that $E = \{x \in \mathbb{R}^2 : || x || < 1\}$ in \mathbb{R}^2 . Prove that the function $f : E \rightarrow \mathbb{R}^3$ given by $f(x_1, x_2) = (e^{x_1}, e^{x_2}, x_1 - x_2)$ belongs to $C^1(E)$.
- (c) State the Cantor's intersection theorem. Show that the completeness condition in the theorem cannot be dropped.
- (a) Check the measurability and integrability of the following functions defined on R.
 Justify your answer.
 - (i) f(x) = 2, x = 1, 2, 3, 4= -1, x = -1, -2, -3= 0, elsewhere.

(ii)
$$f(x) = x + e^x$$

(iii)
$$f(x) = \frac{5}{2}, x \in [0, 6]$$

(b) Suppose X and Y are metric spaces with X compact. Prove that a continuous function f: X → Y is uniformly continuous.

= 0 elsewhere.

5. (a) Prove that the function $f: \mathbb{R}^4 \to \mathbb{R}^4$ defined by $f(x, y, z, w) = (x + 2y, x^2 - y^2, wz, y + w)$ is locally invertible at (1, 1, 1, 1).

MMT-004

4.

P.T.O.

4

3

4

2

(b) Prove that the Fourier transform of a function in $L^1(\mathbf{R})$ is continuous.

3

4

3

3

4

3

- (c) For f, $g \in L^1(\mathbb{R})$, define convolution f * g. Prove that "convolution" is commutative.
- 6. (a) Suppose X is a compact metric space and Y is any metric space. Suppose $f : X \to Y$ is continuous. Prove that f(X) is compact.
 - (b) Suppose $f: \mathbb{R}^3 \to \mathbb{R}$ is defined as

$$f(x, y_1, y_2) = x^2 y_1 - e^x + y_2$$

Prove that f satisfies all the conditions of the Implicit Function Theorem near (1, 1). What conclusion can you draw?

- (c) State Monotone Convergence Theorem and show that it is not true for decreasing sequence of functions.
- 7. (a) (i) Define a linear system.
 - (ii) Let h be a scalar valued function. Let $\mathcal{K} : S \to S$ be the system given by

$$(\mathcal{R}f)(t) = \int_{-\infty}^{\infty} h(\tau) f(t-\tau) d\tau.$$

Prove that the system R is a linear system, where 'S' is a set of signals.

MMT-004

(b) Suppose $f : E \to \mathbb{R}^n$ is a function which is differentiable at $x \in E$. Suppose the second derivative of f exists at $a \in E$. Prove that the second partial derivatives of all components f_k exist at $a \in E$ for k = 1, ... m and they satisfy

$$(\mathbf{f}_{\mathbf{k}}^{2})(\mathbf{a})(\mathbf{e}_{\mathbf{i}},\mathbf{e}_{\mathbf{j}}) = \frac{\partial^{2}\mathbf{f}_{\mathbf{k}}(\mathbf{a})}{\partial \mathbf{x}_{\mathbf{i}} \partial \mathbf{x}_{\mathbf{j}}} = \frac{\partial^{2}\mathbf{f}_{\mathbf{k}}(\mathbf{a})}{\partial \mathbf{x}_{\mathbf{j}} \partial \mathbf{x}_{\mathbf{i}}}.$$

(c) Find the interior, closure and boundary of the set $A = \{(0, y) \in \mathbb{R}^2 : 0 \le y \le 1\}$ as a subset of \mathbb{R}^2 with standard metric.

MMT-004

4