M．Sc．（MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE） M．Sc．（MACS）

Term－End Examination
ロロ戶戶 4 December， 2016

MMT－004 ：REAL ANALYSIS

Time ： 2 hours
Maximum Marks ： 50
（Weightage ：70\％）
Note：Question no． 1 is compulsory．Attempt any four questions out of questions no． 2 to 7．Calculators are not allowed．

1．State whether the following statements are True or False．Give reasons for your answers．$\quad 5 \times 2=10$
（a）$\{0\} \cup\left\{\left.\frac{1}{\mathrm{n}} \right\rvert\, \mathrm{n}=1,2,3, \ldots\right\}$ is a compact set in \mathbf{R} ．
（b） $\mathbf{R}^{2} \backslash\{(1, a): a \in \mathbf{R}\}$ has two components．
（c）The function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ given by $f(x, y)=\left(x^{2}-y^{2}, 2 x y\right)$ is locally invertible at every point of \mathbf{R}^{2} except at（ 0,0 ）．
(d) The function $\mathrm{f}: \mathbf{R}^{\mathbf{3}} \rightarrow \mathbf{R}^{2}$ defined by $f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} \sin \frac{1}{x_{1}}, x_{2}-x_{3}\right)$ is continuously differentiable in \mathbf{R}^{3}.
(e) For $\mathbf{f}, \mathbf{g} \in \mathrm{L}^{1}([\mathrm{a}, \mathrm{b}]),\|\mathbf{f}-\mathbf{g}\|$ defined as

$$
\|f-g\|=\int^{b}(f(x)-g(x)) d x \text { is a metric }
$$

$$
\text { on } L^{1}([a, b])
$$

2. (a) Is an arbitrary union of closed sets closed? Justify your answer.
(b) Find the stationary points of the function $\mathrm{f}: \mathbf{R}^{\mathbf{3}} \rightarrow \mathbf{R}$ given by
$f(x, y, z)=(x+y+z)^{3}-3(x+y+z)-24 x y z$ and check whether they are local extreme points.
(c) When is a set said to be measurable? Show that the intersection of two measurable sets is measurable.
3. (a) Let X be a metric space and $f: X \rightarrow Y$ be a function such that for every closed set $\mathrm{V} \subset \mathrm{Y}$, its inverse image $\mathrm{f}^{-1}(\mathrm{~V})$ is closed in X. Then show that f is continuous.
(b) Let E be the open set such that $E=\left\{x \in \mathbf{R}^{2}:\|x\|<1\right\}$ in \mathbf{R}^{2}. Prove that the function $\mathbf{f}: \mathbf{E} \rightarrow \mathbf{R}^{\mathbf{3}}$ given by $f\left(x_{1}, x_{2}\right)=\left(e^{x_{1}}, e^{x_{2}}, x_{1}-x_{2}\right)$ belongs to $C^{1}(E) . \quad 4$
(c) State the Cantor's intersection theorem. Show that the completeness condition in the theorem cannot be dropped.
4. (a) Check the measurability and integrability of the following functions defined on \mathbf{R}. Justify your answer.
(i) $f(x)=2, \quad x=1,2,3,4$
$=-1, x=-1,-2,-3$
$=0$, elsewhere.
(ii) $f(x)=x+e^{x}$
(iii) $\mathrm{f}(\mathrm{x})=\frac{5}{2}, \mathrm{x} \in[0,6]$
$=0$ elsewhere.
(b) Suppose X and Y are metric spaces with X compact. Prove that a continuous function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is uniformly continuous.
5. (a) Prove that the function $f: R^{4} \rightarrow R^{4}$ defined by $f(x, y, z, w)=\left(x+2 y, x^{2}-y^{2}, w z, y+w\right)$ is locally invertible at ($1,1,1,1$).
(b) Prove that the Fourier transform of a function in $L^{1}(R)$ is continuous.
(c) For $f, g \in L^{1}(\mathbf{R})$, define convolution $f^{*} g$. Prove that "convolution" is commutative.
6. (a) Suppose X is a compact metric space and Y is any metric space. Suppose $f: X \rightarrow Y$ is continuous. Prove that $f(X)$ is compact.
(b) Suppose $\mathrm{f}: \mathbf{R}^{\mathbf{3}} \rightarrow \mathbf{R}$ is defined as

$$
f\left(x, y_{1}, y_{2}\right)=x^{2} y_{1}-e^{x}+y_{2}
$$

Prove that f satisfies all the conditions of the Implicit Function Theorem near (1, 1). What conclusion can you draw?
(c) State Monotone Convergence Theorem and show that it is not true for decreasing sequence of functions.
7. (a) (i) Define a linear system.
(ii) Let h be a scalar valued function.

Let $\mathcal{R}: S \rightarrow S$ be the system given by
($\mathrm{R} f(\mathrm{t})=\int_{-\infty}^{\infty} h(\tau) f(t-\tau) d \tau$.
Prove that the system R is a linear system, where ' S ' is a set of signals.
(b) Suppose $\mathbf{f}: \mathbf{E} \rightarrow \mathbf{R}^{\mathrm{n}}$ is a function which is differentiable at $\mathbf{x} \in E$. Suppose the second derivative of f exists at $a \in E$. Prove that the second partial derivatives of all components f_{k} exist at $a \in E$ for $k=1, \ldots m$ and they satisfy

$$
\begin{equation*}
\left(f_{k}^{2}\right)(a)\left(e_{i}, e_{j}\right)=\frac{\partial^{2} f_{k}(a)}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f_{k}(a)}{\partial x_{j} \partial x_{i}} \tag{4}
\end{equation*}
$$

(c) Find the interior, closure and boundary of the set $\mathbf{A}=\left\{(0, y) \in \mathbf{R}^{2}: 0 \leq y \leq 1\right\}$ as a subset of \mathbf{R}^{2} with standard metric.

