No. of Printed Pages: 4

MMT-003

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS) Term-End Examination

MMT-003 : ALGEBRA

Time : 2 hours

Maximum Marks : 50

(Weightage : 70%)

10

- Note: Question no. 1 is compulsory. Answer any four questions from questions no. 2 to 6.
- 1. State, with reasons, which of the following statements are *True* and which are *False*:
 - (a) If G is a group containing normal subgroups of order 3 and 5, then G contains an element of order 15.
 - (b) There is a finite field of order 12.
 - (c) Every free group is abelian.

(d) $\begin{bmatrix} -1 & 1 \\ & \\ 3 & 3 \end{bmatrix}$ is a symplectic matrix.

(e) $\rho: S_3 \to S_3: \rho(\mathbf{x}) = \mathbf{x}$ is a representation of S_3 .

MMT-003

1

P.T.O.

- Find the degree of $\mathbf{Q}(\sqrt{2}\,,\,\sqrt{3}\,)$ over $\mathbf{Q}.$ (a) 2.
 - Define a regular language. Give an (b) example of the same, with justification.

(c) Show that
$$\rho(e^{i\theta}) = \begin{bmatrix} e^{i\theta} & e^{2i\theta} - e^{i\theta} \\ 0 & e^{2i\theta} \end{bmatrix}$$
 is

of $\{e^{i\theta} \mid \theta \in \mathbf{R}\}$. Is the representation representation unitary ? Give reasons for your answer.

- Prove that if p > 2 is a prime, then $(1 \ 2)$ (a) . 3. and $(1 \ 2 \dots p-1 \ p)$ generate S_p .
 - Prove that if $K \subseteq E \subseteq L$ are fields such that **(b)** L/K is a normal extension, then L/E is also normal.
 - If $G = \{i, (1 \ 3 \ 2) \ (4 \ 6 \ 5) \ (7 \ 8), \ (1 \ 3 \ 2) \ (4 \ 6 \ 5), \$ (c) $(1 \ 2 \ 3) \ (4 \ 5 \ 6), \ (1 \ 2 \ 3) \ (4 \ 5 \ 6) \ (7 \ 8), \ (7 \ 8)\},$ find the stabiliser of 7 in G, where G acts on {1, 2, ... 6, 7, 8} as permutations.
 - Find an integer x such that (a) 4.

 $2\mathbf{x} \equiv 1 \pmod{3}$,

 $3\mathbf{x} \equiv 1 \pmod{5},$

 $5x \equiv 1 \pmod{7}$ simultaneously.

2

MMT-003

3

5

4

3

a

3

2

5

) Consider the incomplete character table, for the tetrahedral group given below, in which all the conjugacy classes are given :

	(1) x ₁	(3) x ₂	(4) x ₃	(4) x ₄
X ₁	1	. 1	1	1
χ 2	1	1	ω	ω ²
χ ₃	1	1	ω ²	ω

where ω is a primitive cube root of unity.

- (i) What is the order of the group?
- (ii) How many characters are missing?
- (iii) Find the missing characters and complete the table.
- (iv) Find the order of the kernel of the representation(s) corresponding to the missing character(s).
- 5

3

4

3

(a) Check whether the ISBN number 0-387-97329-X is a valid ISBN number.

- (b) Let P be a matrix in $SO_3(C)$. Then prove that 1 is an eigenvalue of P.
- (c) Consider the binary linear code C = {0000, 0001, 0011, 0111, 0010, 0110, 0100, 0101}.
 Find a generator matrix for C. Is this generator matrix in systematic form ? Justify your answer.

MMT-003

5.

P.T.O.

- 6. (a) State the structure theorem for finitely generated abelian groups. Further, find the invariant factors of the group $Z_{49} \times Z_{28}$.
 - (b) Let **F** be a finite field with q elements and $A = \begin{bmatrix} -1 & -1 \\ & \\ 1 & 0 \end{bmatrix} \in GL_2(\mathbf{F}). \text{ Find N}(\mathbf{A}). \qquad 3$
 - (c) Give an example, with justification, of a group action on a non-empty set S.

MMT-003

1,500

4

3