M.Sc. (MATHEMATICS WITH APPLICATIONS

IN COMPUTER SCIENCE)
M.Sc. (MACS)

Term-End Examination
December, 2016

MMT-003 : ALGEBRA

Time: 2 hours
Maximum Marks : 50
(Weightage : 70\%)
Note: Question no. 1 is compulsory. Answer any four questions from questions no. 2 to 6 .

1. State, with reasons, which of the following statements are True and which are False:
(a) If G is a group containing normal subgroups of order 3 and 5 , then G contains an element of order 15.
(b) There is a finite field of order 12.
(c) Every free group is abelian.
(d) $\left[\begin{array}{cc}-1 & 1 \\ 3 & 3\end{array}\right]$ is a symplectic matrix.
(e) $\rho: S_{3} \rightarrow S_{3}: \rho(x)=x$ is a representation of S_{3}.
2. (a) Find the degree of $\mathbf{Q}(\sqrt{2}, \sqrt{3})$ over \mathbf{Q}.
(b) Define a regular language. Give an example of the same, with justification.
(c) Show that $\rho\left(e^{i \theta \theta}\right)=\left[\begin{array}{cc}e^{i \theta \theta} & e^{2 i \theta}-e^{i \theta} \\ 0 & e^{2 i \theta}\end{array}\right]$ is a representation of $\left\{\mathrm{e}^{\mathrm{i} \mathrm{\theta}} \mid \theta \in \mathbf{R}\right\}$. Is the representation unitary? Give reasons for your answer.
3. (a) Prove that if $p>2$ is a prime, then (1 2) and (1 $2 \ldots p-1 p$) generate S_{p}.
(b) Prove that if $K \subseteq E \subseteq L$ are fields such that L / K is a normal extension, then L / E is also normal.
(c) If $\mathrm{G}=(\mathrm{i},(132)(465)(78),(132)(465)$, (123) (456), (123)(456)(78), (78)\}, find the stabiliser of 7 in G, where G acts on $\{1,2, \ldots 6,7,8\}$ as permutations.
4. (a) Find an integer x such that

$$
\begin{aligned}
& 2 x \equiv 1(\bmod 3), \\
& 3 x \equiv 1(\bmod 5), \\
& 5 x \equiv 1(\bmod 7) \text { simultaneously } .
\end{aligned}
$$

(b) Consider the incomplete character table, for the tetrahedral group given below, in which all the conjugacy classes are given :

	(1)	(3)	(4)	(4)
	x_{1}	x_{2}	\mathbf{x}_{3}	\mathbf{x}_{4}
χ_{1}	1	1	1	1
χ_{2}	1	1	ω	ω^{2}
χ_{3}	1	1	ω^{2}	ω

where ω is a primitive cube root of unity.
(i) What is the order of the group?
(ii) How many characters are missing?
(iii) Find the missing characters and complete the table.
(iv) Find the order of the kernel of the representation(s) corresponding to the missing character(s).
5. (a) Check whether the ISBN number $0-387-97329-\mathrm{X}$ is a valid ISBN number.
(b) Let P be a matrix in $\mathrm{SO}_{3}(\mathbf{C})$. Then prove that 1 is an eigenvalue of P.
(c) Consider the binary linear code $\mathrm{C}=\{0000$, 0001, 0011, 0111, 0010, 0110, 0100, 0101\}. Find a generator matrix for C. Is this generator matrix in systematic form ? Justify your answer.
6. (a) State the structure theorem for finitely generated abelian groups. Further, find the invariant factors of the group $\mathbf{Z}_{49} \times \mathbf{Z}_{28}$.
(b) Let \mathbf{F} be a finite field with q elements and $A=\left[\begin{array}{cc}-1 & -1 \\ 1 & 0\end{array}\right] \in \mathrm{GL}_{2}(F)$. Find $N(A)$.
(c) Give an example, with justification, of a group action on a non-empty set S.

