M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

D1115 December, 2016

MMT-002 : LINEAR ALGEBRA

Time : $1 \frac{1}{2}$ hours
Maximum Marks : 25
(Weightage : 70\%)
Note: Question no. 5 is compulsory. Answer any three questions from questions no. 1 to 4. Calculators are not allowed.

1. (a) Show that the matrix $A=\left(\begin{array}{lll}1 & 1 & -2 \\ 1 & 0 & -1 \\ 1 & 0 & -1\end{array}\right)$ is
nilpotent.
(b) Let A be the matrix in question 1(a), Compute the solution of the system of differential equations

$$
\frac{d y(t)}{d t}=A y(t) \text { with } y(0)=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \text {. }
$$

2. (a) Use the least squares method to find the line that best fits the data

$$
(-1,0),(0,1),(1,2),(2,4)
$$

(b) Let $\mathbf{T}: \mathbf{R}^{\mathbf{3}} \rightarrow \mathbf{R}^{2}$ be defined by

$$
T\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
x+y+3 z \\
x+2 y-z
\end{array}\right]
$$

Find the matrix of T with respect to the bases $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$ and $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ of R^{3} and \mathbf{R}^{2}, respectively.
3. (a) Show that $\left(\begin{array}{rr}5 & -1 \\ -1 & 5\end{array}\right)$ is positive definite and find its square root.

3
(b) Check whether the matrix $\left[\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right]$ is diagonalisable.
4. (a) Find the singular value decomposition of

$$
A=\left(\begin{array}{rr}
1 & -1 \tag{3}\\
-2 & 2 \\
2 & -2
\end{array}\right)
$$

(b) Give an example, with justification, of two matrices whose characteristic and minimal polynomials are the same, but their Jordan forms are different.
5. State whether the following statements are True or False. Give reasons for your answer. $5 \times 2=10$
(a) If x is an $n \times 1$ vector of norm 1 , then $x^{+}=\mathrm{x}^{*}$.
(b) Every orthogonal matrix is also a unitary matrix.
(c) Any 3×3 matrix with minimal polynomial x^{3} is similar to the matrix $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$.
(d) Suppose a matrix A satisfies the equation $(A-I)(A-2 I)(A-3 I)=0$. Then it is diagonalisable.
(e) If A and B are similar to the identity matrix I_{n}, then $A=B$.

