M.Sc. (MATHEMATICS.WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

00198
Term-End Practical Examination

December, 2016

MMT-007(P) : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time : $1 \frac{1}{2}$ Hours
Maximum Marks : 40

Note: (i) There are two questions in this paper, totalling 30 marks. Answer both of them.
(ii) Remaining 10 marks are for viva-voce.

1. Write a ' C ' program to solve the boundary value problem

$$
\begin{aligned}
& y^{\prime \prime}=y-4 x e^{x}, 0<x<1 \\
& y(0)-y^{\prime}(0)=-1, y(1)+y^{\prime}(1)=-e
\end{aligned}
$$

using the shooting method. Use the Taylor series method

$$
\begin{aligned}
& y_{i+1}=y_{i}+h y_{i}^{\prime}+\frac{h^{2}}{2} y_{i}^{\prime \prime}+\frac{h^{3}}{6} y_{i}^{\prime \prime \prime} \\
& y_{i+1}^{\prime \prime}=y_{i}^{\prime}+h y_{i}^{\prime \prime}+\frac{h^{2}}{2} y_{i}^{\prime \prime \prime}
\end{aligned}
$$

with $h=0.2$ to solve the resulting initial value problem.
2. Write a program in ' C ' language to solve the elliptic equation

$$
\frac{\partial^{2} \mathbf{u}}{\partial \mathbf{x}^{2}}+\frac{\partial^{2} \mathbf{u}}{\partial \mathbf{y}^{2}}=0
$$

for the following square mesh with boundary values as shown in the figure.

Iterate until the maximum difference between two successive values at any point is less than 0.001 .

