BACHELOR OF SCIENCE (B.Sc.)

Term-End Examination
 December, 2016

00594

PHYSICS
 PHE-06 : THERMODYNAMICS AND STATISTICAL MECHANICS

Time: 2 hours
Maximum Marks : 50

Note: All questions are compulsory. However, internal choices are given. You can use non-programmable calculators or log tables. Symbols have their usual meanings. Marks are indicated against each question.

1. Answer any three parts :
$3 \times 5=15$
(a) State the assumptions of kinetic theory for ideal gases.
(b) What is Joule-Thomson effect? Why is it also called isenthalpic effect? Justify your answer.
(c) A quantity of dry air $(\gamma=1.4)$ at $15^{\circ} \mathrm{C}$ is adiabatically compressed to half its volume.
Calculate the final temperature.
(d) Show that entropy S and thermodynamic probability W for a completely ordered system is $\mathrm{S}=\mathrm{k} \ln \mathrm{W}$.
2. Show that a gaseous system can be characterised by the relation

$$
\frac{d V}{V}=\beta d T-k d p
$$

where \mathbf{k} is isothermal compressibility and β is isobaric expansivity.

OR

Define entropy. Calculate the change in entropy when two gases kept in separate containers are allowed to mix.
3. Attempt any two parts :
(a) What is an adiabatic process? Show that the work done during an adiabatic process is

$$
\mathrm{W}=\frac{1}{\gamma-1}\left[\mathrm{p}_{1} \mathrm{v}_{1}-\mathrm{p}_{2} \mathrm{v}_{2}\right]
$$

(b) State Kelvin-Planck and Clausius statements of second law of thermodynamics. Show that these two statements are equivalent.
(c) Write Van der Waals equation of state for a real gas. Show that the Boyle's temperature (T_{B}) is related to critical temperature (T_{C}) through the relation

$$
\mathrm{T}_{\mathrm{B}}=3.375 \mathrm{~T}_{\mathrm{C}} \quad 1+4
$$

4. What is Gibbs paradox? Derive Sackur-Tetrode equation for the entropy of an ideal monoatomic gas and show how it is free from Gibbs paradox. $2+5+3$

OR

Abstract

What is adiabatic demagnetisation? Describe an experimental set-up for production of low temperature using this process. $\quad 5+5$

5. (a) The energy distribution of black body radiation according to Planck's law is given by

$$
\mathrm{U}_{v} \mathrm{~d} v=\frac{8 \pi \mathrm{~h}}{\mathrm{c}^{3}} \frac{v^{3} \mathrm{~d} v}{\exp \left[\frac{\mathrm{~h} v}{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}-1\right]}
$$

Obtain the expression for Stefan-Boltzmann constant.
(b) Starting from the relation $\frac{T^{\gamma}}{\mathbf{p}^{\gamma-1}}=$ constant, obtain an expression for adiabatic lapse rate. What is its physical significance?

OR

Abstract

Derive the Clausius-Clapeyron equation. Calculate the depression of the melting point of ice ($\mathrm{L}=80 \mathrm{cal}^{-1}$) per atmospheric increase of pressure, if the ratio of the densities of ice and water at $0^{\circ} \mathrm{C}$ is $\frac{10}{11}$. $5+5$

विज्ञान स्नातक (बी.एस सी.)
सत्रांत परीक्षा

दिसम्बर, 2016

भौतिक विज्ञान
पी.एच.ई.-06 : ऊष्मागतिकी तथा सांख्यिक्कीय यांत्रिकी

नोट : सभी प्रश्न अनिवार्य हैं / परन्तु, आंतरिक विकल्प दिए गए हैं। आप अप्रोग्रामीय कैल्कुलेटरों अथवा लॉग सारणियों का प्रयोग कर सकते हैं। प्रतीकों के अपने सामान्य अर्थ हैं। प्रत्येक प्रश्न के अंक उसके सामने दिए गए हैं ।

1. किन्हीं तीन भागों के उत्तर दीजिए : $3 \times 5=15$
(क) आदर्श गैसों के लिए अणुगति सिद्धान्त की कल्पनाएँ लिखिए।
(ख) जूल-टॉमसन प्रभाव क्या है ? इसे सम-एन्थैल्पी प्रभाव भी क्यों कहा जाता है ? अपने उत्तर की पुष्टि कीजिए।
(ग) $15^{\circ} \mathrm{C}$ ताप पर शुष्क वायु की मात्रा $(\gamma=1 \cdot 4)$ को उसके आयतन के आधे तक रुद्धोष्म संपीडित किया जाता है । इसका अंतिम ताप परिकलित कीजिए।
(घ) पूर्णतया क्रमित तंत्र के लिए एन्ट्रॉपी S और ऊष्मागतिकी प्रायिकता W के बीच संबंध $\mathrm{S}=\mathrm{k} \ln \mathrm{W}$ स्थापित कीजिए।
2. सिद्ध कीजिए कि एक गैसीय तंत्र को निम्नलिखित संबंध द्वारा अभिलक्षित किया जा सकता है :

$$
\frac{d V}{V}=\beta d T-k d p
$$

जहाँ k समतापी संपीड्यता और β समदाबी आयतन प्रसार (प्रसरणीयता) है।

अथवा
एन्ट्रॉपी की परिभाषा दीजिए। अलग-अलग पात्रों में रखी दो गैसों को जब मिश्रित किया जाता है, तो इस मिश्रण के परिणामस्वरूप एन्ट्रॉपी परिवर्तन परिकलित कीजिए।
3. कोई दो भाग हल कीजिए :
(क) रुद्धोष्म प्रक्रम क्या होता है ? सिद्ध कीजिए कि रुद्धोष्म प्रक्रम के दौरान किए गए कार्य का व्यंजक निम्नलिखित होता है :

$$
\mathrm{W}=\frac{1}{\gamma-1}\left[\mathrm{p}_{1} \mathrm{v}_{1}-\mathrm{p}_{2} \mathrm{v}_{2}\right]
$$

(ख) ऊष्मागतिकी के द्वितीय नियम से संबंधित केल्विन-प्लांक और क्लासियस के कथन लिखिए। सिद्ध कीजिए कि ये दोनों कथन समरूप हैं।
(ग) वास्तविक गैस के लिए वाण्डर वाल्स अवस्था समीकरण लिखिए । सिद्ध कीजिए कि बॉयल ताप $\left(\mathrm{T}_{\mathrm{B}}\right)$ और क्रांतिक ताप $\left(\mathrm{T}_{\mathrm{C}}\right)$ के बीच निम्नलिखित संबंध है :

$$
\mathrm{T}_{\mathrm{B}}=3.375 \mathrm{~T}_{\mathrm{C}} \quad 1+4
$$

4. गिब्ज़ विरोधाभास क्या है ? आदर्श एकपरमाणुक गैस की एन्ट्रॉपी के लिए ज़ाक्र-टेट्रोड समीकरण व्युत्पन्न कीजिए और दिखाइए कि यह गिब्ज़ विरोधाभास से किस प्रकार मुक्त है।

अथवा

रुद्धोष्म विचुंबकन क्या होता है ? इस प्रक्रम का उपयोग करके न्यून ताप प्राप्त करने के लिए प्रायोगिक विन्यास का वर्णन कीजिए।
5. (क) कृष्णिका विकिरण का ऊर्जा बंटन प्लांक नियम द्वारा निम्नलिखित रूप से दिया जाता है :

$$
\mathrm{U}_{v} \mathrm{~d} v=\frac{8 \pi \mathrm{~h}}{\mathrm{c}^{3}} \frac{v^{3} \mathrm{~d} v}{\exp \left[\frac{\mathrm{~h} v}{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}-1\right]}
$$

स्टेफ़ॉन-बोल्ट्रज़मान नियतांक का व्यंजक प्राप्त कीजिए।
(ख) संबंध $\frac{\mathrm{T}^{\gamma}}{\mathrm{p}^{\gamma-1}}=$ नियतांक का उपयोग करके रुद्धोष्म-ह्रास दर का व्यंजक प्राप्त कीजिए। इसकी भौतिक सार्थकता क्या है ?
$4+1$
अथवा
क्लासियस-क्लैपेरॉन समीकरण व्युत्पन्न कीजिए । बर्फ़ के गलनांक ($\mathrm{L}=80 \mathrm{cal} \mathrm{g}^{-1}$) में प्रति वायुमंडलीय दाब बढ़ने पर अवनमन परिकलित कीजिए, यदि $0^{\circ} \mathrm{C}$ ताप पर बर्फ़ और पानी के घनत्व का अनुपात $\frac{10}{11}$ है ।

