BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination

D13ア4 December, 2016

ELECTIVE COURSE : MATHEMATICS MTE-09 : REAL ANALYSIS

Time: 2 hours
Maximum Marks : 50
(Weightage : 70\%)
Note: Attempt five questions in all. Question no. 1 is compulsory. Answer any four questions out of the questions no. 2 to 7.

1. Are the following statements True or False ? Give reasons for your answers.
(a) Complement of the open interval $] 0,1[$ is an open set.
(b) Every bounded sequence is convergent.
(c) The function f : $[-2,2] \rightarrow \mathbf{R}$ defined by $f(x)=\frac{4 x+3}{x^{2}+1}$ is uniformly continuous.
(d) If the first derivative of a function at a point vanishes, then it has an extreme value at that point.
(e) The function $\mathrm{f}:$: $[0,2] \rightarrow \mathbf{R}$ defined by $f(x)=x+[x]$ is not integrable.
2. (a) Define an algebraic number. Show that $5+\sqrt{2}$ is an algebraic number.
(b) Examine the function $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ defined by

$$
f(x)=\left\{\begin{array}{cc}
\frac{2 x^{2}+x}{3 x} & x \neq 0 \\
\frac{2}{3} & x=0
\end{array}\right.
$$

for continuity on \mathbf{R}. If it is not continuous at any point in \mathbf{R}, find the nature of discontinuity there.
(c) Examine the function

$$
f(x)=(x-2)^{2}(x+3)^{3}
$$

for local minima and local maxima.
3. (a) Prove or disprove the following :
"The sets \mathbf{Z} (of integers) and \mathbf{N} (of natural numbers) are equivalent."
(b) Prove that the function f defined on \mathbf{R} by

$$
f(x)=x^{3}-9 x^{2}+27 x+10
$$

is increasing in every interval.
(c) Show that on the curve $y=2 x^{2}+5 x+7$, the chord joining the points whose abscissae are $x=1$ and $x=2$, is parallel to the tangent at the point whose abscissa is given by $x=\frac{3}{2}$.
4. (a) Show that the equation

$$
x^{3}+x^{2}-2 x-2=0
$$

has a real root other than $x=-1$, using Intermediate Value Theorem.
(b) Find $\lim _{n \rightarrow \infty}\left[\frac{1}{3 n+1}+\frac{1}{3 n+2}+\ldots+\frac{1}{6 n}\right]$. 4
(c) Show that a set S is closed if and only if $\mathbf{S}=\overline{\mathbf{S}}$, where $\overline{\mathbf{S}}$ denotes the closure of the set S.
5. (a) Find a and b such that $\lim _{x \rightarrow 0} \frac{a \tan x+b x}{x^{3}}$ exists.
(b) Show that $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{5}{7 n+2}$ is conditionally convergent.
(c) For the function $f(x)=2 x+3$ defined over $[0,1]$, verify

$$
L(P, f) \leq U(P, f)
$$

where P is the partition

$$
\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\}
$$

6. (a) Does the sequence $\left\{2+(-1)^{\mathrm{n}}\right\}$ converge to 1 ? Justify.
(b) State Bonnet's Mean Value Theorem for integrals. Apply it to show that

$$
\begin{equation*}
\left|\int_{7}^{10} \frac{\sin x}{x} d x\right| \leq \frac{2}{7} \tag{4}
\end{equation*}
$$

(c) Examine the following series for convergence:
(i) $\sum_{n=1}^{\infty} \frac{3 n}{5 n+7}$
(ii) $\sum_{n=1}^{\infty} \frac{2 n+1}{3^{n}}$
7. (a) State inverse function theorem for continuous functions. Show that the function $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ defined by $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+7$ has an inverse, which is continuous. Find its inverse function also.
(b) Test the sequence $\left\{f_{n}\right\}$ for uniform convergence, where $f_{n}(x)=\frac{2 n x}{3+n^{2} x^{2}}, x \in \mathbf{R} . \quad 3$
(c) Prove by the principle of induction that

$$
1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{1}{3} n\left(4 n^{2}-1\right) \forall n \in \mathbf{N} .
$$

स्नातक उपाधि कार्यक्रम
(बी.डी.पी.)
सत्रांत परीक्षा
दिसम्बर, 2016

ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-09 : वास्तविक विश्लेषण

समय :2 घण्टे
अधिकतम अंक: 50
(कुल का : 70\%)
नोट : कुल पाँच प्रश्नों के उत्तरंरीजिए । प्रश्न सं. 1 अनिवार्य है । प्रश्न सं. 2 से 7 में से किन्हीं चार प्रश्नों के उत्तर दीजिए ।

1. क्या निम्नलिखित कथन सत्य हैं अथवा असत्य ? अपने उत्तरों के कारण बताइए। $5 \times 2=10$
(क) विवृत अन्तराल $] 0,1[$ का पूरक एक विवृत समुच्चय है।
(ख) प्रत्येक परिबद्ध अनुक्रम अभिसारी होता है ।
(ग) $\mathrm{f}(\mathrm{x})=\frac{4 \mathrm{x}+3}{\mathrm{x}^{2}+1}$ द्वारा परिभाषित फलन $\mathrm{f}:[-2,2] \rightarrow \mathbf{R}$ एकसमानतः संतत है ।
(घ) यदि फलन का प्रथम अवकलज एक बिंदु पर लुप्त हो जाता है, तब इसका उस बिंदु पर चरम मान होता है।
(ङ) $f(x)=x+[x]$ द्वारा परिभाषित फलन $f:[0,2] \rightarrow \mathbf{R}$, समाकलनीय नहीं है।
2. (क) बीजीय संख्या को परिभाषित कीजिए। दिखाइए कि $5+\sqrt{2}$ एक बीजीय संख्या है।
(ख) $f(x)=\left\{\begin{array}{cc}\frac{2 x^{2}+x}{3 x} & x \neq 0 \\ \frac{2}{3} & x=0\end{array}\right.$
द्वारा परिभाषित फलन $f: \mathbf{R} \rightarrow \mathbf{R}$ की \mathbf{R} पर सांतत्य के लिए जाँच कीजिए। यदि यह \mathbf{R} में किसी बिंदु पर संतत नहीं है, तब वहाँ असांतत्य का स्वरूप ज्ञात कीजिए।
(ग) स्थानीय निम्निष्ठ और स्थानीय उच्चिष्ठ के लिए फलन $\mathrm{f}(\mathrm{x})=(\mathrm{x}-2)^{2}(\mathrm{x}+3)^{3}$ की जाँच कीजिए।
3. (क) निम्नलिखित को सिद्ध या असिद्ध कीजिए :
"समुच्चय \mathbf{Z} (पूर्णांकों के) और \mathbf{N} (प्राकृतिक संख्याओं के) तुल्य हैं "
(ख) सिद्ध कीजिए कि
$f(x)=x^{3}-9 x^{2}+27 x+10$ द्वारा \mathbf{R} पर परिभाषित फलन f प्रत्येक अन्तराल में वर्धमान है।
(ग) दिखाइए कि वक्र $\mathrm{y}=2 \mathrm{x}^{2}+5 \mathrm{x}+7$ पर उन बिंदुओं को, जिनके भुज $x=1$ और $x=2$ हैं, मिलाने वाली जीवा उस बिंदु पर खींची गई स्पर्श रेखा के समान्तर होती है जिसका भुज $\mathrm{x}=\frac{3}{2}$ होता है।
4. (क) मध्यवर्ती मान प्रमेय द्वारा दिखाइए कि समीकरण $x^{3}+x^{2}-2 x-2=0$ का $x=-1$ के अलावा वास्तविक मूल होता है।
(ख) $\lim _{\mathrm{n} \rightarrow \infty}\left[\frac{1}{3 \mathrm{n}+1}+\frac{1}{3 \mathrm{n}+2}+\ldots+\frac{1}{6 \mathrm{n}}\right]$ ज्ञात कीजिए।

4
(ग) दिखाइए कि समुच्चय S संवृत है यदि और केवल यदि $\mathbf{S}=\overline{\mathbf{S}}$, जहाँ $\overline{\mathbf{S}}$ समुच्चय S के संवरक को निर्दिष्ट करता है।
5. (क) ऐसा a और b ज्ञात कीजिए जिसके लिए

$$
\lim _{x \rightarrow 0} \frac{a \tan x+b x}{x^{3}} \text { का अस्तित्व है । }
$$

(ख) दिखाइए कि $\sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}+1} \frac{5}{7 \mathrm{n}+2}$ सप्रतिबंधत: अभिसारी है ।
(ग) $[0,1]$ पर परिभाषित फलन $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+3$ के लिए सत्यापित कीजिए कि

$$
\mathrm{L}(\mathrm{P}, \mathrm{f}) \leq \mathrm{U}(\mathrm{P}, \mathrm{f}),
$$

जहाँ P, विभाजन

$$
\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\} \text { है । }
$$

6. (क) क्या अनुक्रम $\left\{2+(-1)^{\mathrm{n}}\right\}, 1$ की ओर अभिसरण करता है ? पुष्टि कीजिए।
(ख) समाकलों के लिए बोनट माध्य मान प्रमेय का कथन दीजिए। इस प्रमेय को लागू करके दिखाइएए कि

$$
\left|\int_{7}^{10} \frac{\sin x}{x} d x\right| \leq \frac{2}{7}
$$

(ग) अभिसरण के लिए निम्नलिखित श्रेणियों की जाँच कीजिए :
(i) $\sum_{n=1}^{\infty} \frac{3 n}{5 n+7}$
(ii) $\sum_{n=1}^{\infty} \frac{2 n+1}{3^{n}}$
7. (क) संतत फलनों के लिए प्रतिलोम फलन प्रमेय का कथन दीजिए । दिखाइए कि $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+7$ द्वारा परिभाषित फलन $\mathbf{f}: \mathbf{R} \rightarrow \mathbf{R}$ का प्रतिलोम होता है, जो संतत होता है। इसका प्रतिलोम फलन भी ज्ञात कीजिए।
(ख) एकसमान अभिसरण के लिए अनुक्रम $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ की जाँच कीजिए, जहाँ $\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\frac{2 \mathrm{nx}}{3+\mathrm{n}^{2} \mathrm{x}^{2}}, \mathrm{x} \in \mathrm{R}$.
(ग) आगमन नियम द्वारा सिद्ध कीजिए कि

$$
1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{1}{3} n\left(4 n^{2}-1\right) \forall n \in \mathbf{N} .
$$

