MTE-04/MTE-05

BACHELOR'S DEGREE PROGRAMME

MTE-04 : ELEMENTARY ALGEBRA

\&

MTE-05 : ANALYTICAL GEOMETRY

Instructions :

1. Students registered for both MTE-04 \& MTE-05 courses should answer both the question papers in two separate answer books entering their enrolment number, course code and course title clearly on both the answer books.
2. Students who have registered for MTE-04 or MTE-05 should answer the relevant question paper after entering their enrolment number, course code and course title on the answer book.

स्नातक उपाधि कार्यक्रम

एम.टी.ई.-04 : प्रारंभिक बीजगणित

एवं
एम.टी.ई.-05 : वैश्लेषिक ज्यामिति

निर्देश:

1. जो छात्र एम.टी.ई.-04 और एम.टी.ई. 05 दोनों पाठ्यक्रमों के लिए पंजीकृत हैं, दोनों प्रश्न-पत्रों के उत्तर अलग-अलग उत्तर पुस्तिकाओं में अपना अनुक्रमांक, पाठ्यक्रम कोड तथा पाठ्यक्रम नाम साफ़-साफ़ लिखकर दें।
2. जो छात्र एम.टी.ई.-04 या एम.टी.ई. 05 किसी एक के लिए पंजीकृत हैं, अपने उसी प्रश्न-पत्र के उत्तर उत्तर-पुस्तिका में अपना अनुक्रमांक, पाठ्यक्रम कोड तथा पाठ्यक्रम नाम साफ़-साफ़ लिखकर दें ।

MTE-04

BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination
 December, 2016
 ELECTIVE COURSE : MATHEMATICS

MTE-04 : ELEMENTARY ALGEBRA

Time : $1 \frac{1}{2}$ hours
Maximum Marks : 25
(Weightage : 70\%)
Note: Question no. 4 is compulsory. Answer any three questions from the remaining questions. Use of calculators is not allowed.

1. (a) Solve the following linear systems by the process of elimination :

$$
\begin{aligned}
& x+2 y+5 z=-9 \\
& x-y+3 z=2 \\
& 3 x-6 y-z=25
\end{aligned}
$$

(b) Give an example, with justification, of each of the following :
(i) An element of $(\mathbf{C} \times \mathbf{Q}) \backslash(\mathbf{Q} \times \mathbf{C})$;
(ii) An infinite set whose complement in \mathbf{R} is infinite.
2. (a) Find the roots of the polynomial equation

$$
x^{4}-9 x^{3}+17 x^{2}+33 x-90=0
$$

given that two of its roots are equal to 3 .
(b) Use the principle of mathematical induction to show that for any positive integer n, $\left(3^{n}-2^{n}\right)>0$.
3. (a) A coach buys 3 cricket bats and 6 balls for ₹ 3,900. Later, he buys 1 bat and 3 balls for another team for ₹ 1,450 . Write two linear equations to represent the purchases. Why can the linear system so obtained be solved by Cramer's rule ? Also, use the rule to solve the system, and interpret the solution in the given context.
(b) Give an example of a 4×1 matrix with entries from $\mathbf{Z} \backslash \mathbf{N}$.
4. Which of the following statements are true and which are false ? Justify your answers with a short proof or counter-example.
(a) If A and B are two subsets of a universal set U, then $A^{c} \backslash B=A \backslash B^{c}$.
(b) The roots of a quadratic equation are always real numbers.
(c) $|x+y|=|x|+|y|$ for all $x, y \in R$.
(d) The contrapositive of 'If two triangles have the same area, then they are congruent' is 'If two triangles are congruent, then they have the same area'.
(e) If A is a square matrix with $|A|=0$, then two of its rows or two of its columns must be the same.
5. (a) If x, y and z are positive real numbers, show that

$$
\begin{equation*}
\left(x^{2} y+y^{2} z+z^{2} x\right)\left(x y^{2}+y z^{2}+z x^{2}\right) \geq 9 x^{2} y^{2} z^{2} \tag{3}
\end{equation*}
$$

(b) Use Cardano's method to obtain the roots of $x^{3}-3 x+2=0$.

स्नातक उपाधि कार्यक्रम

(बी.डी.पी.)
सत्रांत परीक्षा
दिसम्बर, 2016
ऐच्छिक पाठ्यक्रम : गणित
एम.टी.ई.-04: प्रारंभिक बीजगणित
समय : $1 \frac{1}{2}$ घण्टे अधिकतम अंक : 25
(कुल का : 70\%)
नोट : प्रश्न सं. 4 करना अनिवार्य है । शेष प्रश्नों में से किन्हीं तीन प्रश्नों के उत्तर दीजिए / कैल्कुलेटरों के प्रयोग करने की अनुमति नहीं है।

1. (क) निम्नलिखित रैखिक निकाय को निराकरण विधि द्वारा हल कीजिए :

$$
\begin{aligned}
& x+2 y+5 z=-9 \\
& x-y+3 z=2 \\
& 3 x-6 y-z=25
\end{aligned}
$$

(ख) निम्नलिखित में से प्रत्येक का पुष्टि के साथ, एक उदाहरण दीजिए :
(i) $(\mathbf{C} \times \mathbf{Q}) \backslash(\mathbf{Q} \times \mathbf{C})$ का एक अवयव;
(ii) एक अंतंत समुच्चय जिसका \mathbf{R} में पूरक अनंत है ।
2. (क) बहुपद समीकरण

$$
x^{4}-9 x^{3}+17 x^{2}+33 x-90=0
$$

के मूल ज्ञात कीजिए, जबकि यह दिया हुआ है कि इसके दो मूल 3 के बराबर हैं ।
(ख) गणितीय आगमन सिद्धान्त का प्रयोग करके यह दिखाइए कि किसी धन पूर्णांक n के लिए, $\left(3^{n}-2^{n}\right)>0$.
3. (क) एक कोच ₹ 3,900 में क्रिकेट के 3 बल्ले और 6 गेंदें खरीदता है । बाद में वह दूसरी टीम के लिए 1 बल्ला और 3 गेंदें, ₹ 1,450 में खरीदता है । इन खरीददारियों को निरूपित करने के लिए दो रैखिक समीकरण लिखिए । इस तरह प्राप्त रैखिक निकाय को क्रेमर नियम द्वारा क्यों हल किया जा सकता है ? आगे, निकाय को हल करने के लिए क्रेमर नियम का प्रयोग कीजिए और हल की दिए गए संदर्भ में व्याख्या कीजिए।
(ख) एक 4×1 आव्यूह का उदाहरण दीजिए जिसकी प्रविष्टियाँ $\mathbf{Z} \backslash \mathbf{N}$ से हों ।
4. निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से असत्य ? अपने उत्तर की लघु उपपत्ति या प्रति-उदाहरण द्वारा पुष्टि कीजिए।
(क) यदि A और B समष्टीय समुच्चय U के दो उपसमुच्चय हैं तो $\mathrm{A}^{\mathrm{c}} \backslash \mathrm{B}=\mathrm{A} \backslash \mathrm{B}^{\mathrm{C}}$.
(ख) द्विघात समीकरण के मूल हमेशा वास्तविक संख्याएँ होती हैं ।
(ग) सभी $x, y \in R$ के लिए, $|x+y|=|x|+|y|$.
(घ) यदि दो त्रिभुजों का क्षेत्रफल समान है, तो वे सर्वांगसम होती हैं का प्रतिस्थितिक 'यदि दो त्रिभुज सर्वांगसम हैं, तो उनके क्षेत्रफल समान होंगे है।
(ङ) यदि A एक वर्ग आव्यूह है और $|\mathrm{A}|=0$ है, तो इसकी दो पंक्तियाँ या दो स्तंभ समान होंगे ।
5. (क) यदि x, y और z वास्तविक धन संख्याएँ हैं, तो दिखाइए कि
$\left(x^{2} y+y^{2} z+z^{2} x\right)\left(x y^{2}+y z^{2}+x^{2}\right) \geq 9 x^{2} y^{2} z^{2}$.
(ख) $\mathrm{x}^{3}-3 \mathrm{x}+2=0$ के मूल प्राप्त करने के लिए कार्दानो विधि का प्रयोग कीजिए।

BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination

December, 2016

ELECTIVE COURSE : MATHEMATICS

MTE-05 : ANALYTICAL GEOMETRY

Time : $1 \frac{1}{2}$ hours
Maximum Marks : 25
(Weightage : 70\%)
Note: Question no. 5 is compulsory. Attempt any three questions from questions no. 1 to 4. Use of calculators is not allowed.

1. (a) Find the equation of the parabola with focus $(3,-4)$ and directrix $x+y=2$.
(b) Find the equation of the plane which passes through the line of intersection of the planes $2 x-3 y+z-4=0$ and $x-y+z+1=0$ and which is perpendicular to the plane $x+2 y-3 z+6=0$.
2. (a) Find the new equation of the conic $x^{2}+y^{2}+4 x-2 y+4=0$ after shifting the origin to $(-2,1)$ and then rotating the axes through 45°.
(b) Find the centre and radius of the sphere $2 x^{2}+2 y^{2}+2 z^{2}-16 x+8 y+16 z+23=0$. Hence, determine whether the point $(1,4,2)$ lies inside or outside the sphere.
3. (a) Find the centre of the conicoid $9 x^{2}+4 y^{2}+4 z^{2}+4 x+y+10 z+1=0$.
Hence reduce it to standard form. Also identify the type of the conicoid.
(b) Reduce the following equations to cartesian form and identify the curves they represent:
(i) $\quad r \cos \left(\theta-\frac{\pi}{4}\right)=\sqrt{2}$
(ii) $\mathrm{r}^{2}=3 \mathrm{r} \sin \theta$
4. (a) Find the equation of the right circular cone whose vertex is $(1,1,0)$, axis is $\frac{x-1}{2}=\frac{y-1}{2}=z$ and semi-vertical angle is 60°. Further, find the section of the cone with the plane $x=2$.
(b) Find the section of the conicoid $y^{2}-3 z^{2}=x$ by the plane $\mathrm{y}=2$. Identify the curve represented by the section.
5. Which of the following statements are true and which ones are false? Give reasons for your answers.
(a) The equation $x+3 y=0$ represents a line in 3 -dimensional space.
(b) The conics $y^{2}=2 x$ and $y^{2}-x^{2}=1$ do not intersect.
(c) The plane $x+y+z=0$ touches the cone $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}+2 \mathrm{yz}+2 \mathrm{zx}+2 \mathrm{xy}=0$.
(d) Every planar section of a paraboloid is a parabola.
(e) A curve which is symmetric about the origin is symmetric about both the coordinate axes.

स्नातक उपाधि कार्यक्रम

(बी.डी.पी.)
सत्रांत परीक्षा

दिसम्बर, 2016

ऐच्छिक पाठ्यक्रम : गणित

एम.टी.ई.-05 : वैश्लेषिक ज्यामिति

समय : $1 \frac{1}{2}$ घण्टे अधिकतम अंक : 25
(कुल का : 70\%)
नोट : प्रश्न सं. 5 अनिवार्य है । प्रश्न सं. 1 से 4 में से किन्हीं तीन प्रश्नों को हल कीजिए। कैल्कुलेटरों के प्रयोग करने की अनुमति नहीं है ।

1. (क) उस परवलय का समीकरण ज्ञात कीजिए जिसकी नाभि $(3,-4)$ है और नियता $\mathrm{x}+\mathrm{y}=2$ है।
(ख) समतलों $2 \mathrm{x}-3 \mathrm{y}+\mathrm{z}-4=0$ और
$\mathrm{x}-\mathrm{y}+\mathrm{z}+1=0$ की प्रतिच्छेद रेखा से होकर जाने वाले और समतल $\mathrm{x}+2 \mathrm{y}-3 \mathrm{z}+6=0$ के लंब समतल का समीकरण ज्ञात कीजिए।
2. (क) मूल-बिंदु को $(-2,1)$ पर स्थानांतरित करके और अक्षों को 45° पर घुमाकर शांकव $\mathrm{x}^{2}+\mathrm{y}^{2}+4 \mathrm{x}-2 \mathrm{y}+4=0$ का नया समीकरण ज्ञात कीजिए।
(ख) गोले $2 \mathrm{x}^{2}+2 \mathrm{y}^{2}+2 \mathrm{z}^{2}-16 \mathrm{x}+8 \mathrm{y}+16 \mathrm{z}+23=0$ के केन्द्र और त्रिज्या ज्ञात कीजिए । अतः निर्धारित कीजिए कि बिंदु $(1,4,2)$ इस गोले के अंदर स्थित है या बाहर ।
3. (क) शांकवज $9 \mathrm{x}^{2}+4 \mathrm{y}^{2}+4 \mathrm{z}^{2}+4 \mathrm{x}+\mathrm{y}+10 \mathrm{z}+1=0$ का केन्द्र ज्ञात कीजिए । अतः इसको मानक रूप में समानीत कीजिए। इस शांकवज का प्रकार भी बताइए।
(ख) निम्नलिखित समीकरणों को कार्तीय रूप में समानीत कीजिए और पता लगाइए कि ये संमीकरण किन वक्रों को निरूपित करते हैं :
(i) $\quad \mathrm{r} \cos \left(\theta-\frac{\pi}{4}\right)=\sqrt{2}$
(ii) $\mathrm{r}^{2}=3 \mathrm{r} \sin \theta$
4. (क) उस लंब-वृत्तीय शंकु का समीकरण ज्ञात कीजिए जिसका शीर्ष $(1,1,0)$ है, अक्ष $\frac{x-1}{2}=\frac{y-1}{2}=z$ है और अर्ध-शीर्ष कोण 60° है। साथ ही, समतल $\mathrm{x}=2$ द्वारा इस शंकु का परिच्छेद ज्ञात कीजिए।
(ख) शांकवज $\mathrm{y}^{2}-3 \mathrm{z}^{2}=\mathrm{x}$ का समतल $\mathrm{y}=2$ से परिच्छेद ज्ञात कीजिए । इस परिच्छेद द्वारा निरूपित वक्र को पहचानिए।
5. निम्नलिखित में से कौन-से कथन सत्य और कौन-से कथन असत्य हैं । अपने उत्तर के कारण दीजिए। $5 \times 2=10$
(क) त्रिविम समष्टि में समीकरण $x+3 y=0$ एक रेखा को निरूपित करता है।
(ख) शांकव $\mathrm{y}^{2}=2 \mathrm{x}$ और $\mathrm{y}^{2}-\mathrm{x}^{2}=1$ प्रतिच्छेद नहीं करते ।
(ग) समतल $\mathrm{x}+\mathrm{y}+\mathrm{z}=0$ शंकु
$\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}+2 \mathrm{yz}+2 \mathrm{zx}+2 \mathrm{xy}=0$ को स्पर्श करता है।
(घ) परवलयज का प्रत्येक समतलीय परिच्छेद एक परवलय होता है।
(ङ) यदि कोई वक्र मूल-बिंदु के प्रति सममित है तो वंह दोनों अक्षों के प्रति भी सममित होता है ।
