BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination

00657

December, 2016

ELECTIVE COURSE: MATHEMATICS
MTE-03: MATHEMATICAL METHODS

Time: 2 hours

Maximum Marks: 50

(Weightage 70%)

Note: Question no. 7 is compulsory. Attempt any four questions from the remaining questions no. 1 to 6. Use of calculators is not allowed.

- 1. (a) Given the function $f(x) = x^2 + 3x + 5$ such that $f: [1, 2] \rightarrow [5, 15]$. Check whether f(x) is
 - (i) One-one,
 - (ii) Onto.

3

(b) Evaluate:

3

$$\int_{0}^{1} \frac{\sin^{-1} x \, dx}{\sqrt{1-x^2}}$$

- (c) In a shooting competition, a shooter can score a ball 4 times out of 5. If he is given 3 shots what are his chances of scoring a ball
 - (i) exactly once,
 - (ii) at least twice?

1

MTE-03

1

P.T.O.

2. (a) The following table gives the distribution of 100 families according to their expenditure per week. The median of the distribution is 24. Find the frequencies f_1 and f_2 .

4

4

3

4

Expenditure (in thousands of ₹)	No. of families
0 – 10	14
10 – 20	$\mathbf{f_1}$
20 - 30	27
30 – 40	$\mathbf{f_2}$
40 – 50	15

- (b) Let $z = ax^2 + 2hxy + by^2$, where a, b and h are constants. Check whether $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$.
- (c) Obtain the equation of the sphere having centre on the line $\frac{x}{3} = \frac{y}{2} = \frac{z}{-5}$ and passing through the points (0, -2, -4) and (2, -1, -1).
- 3. (a) Divide 30 into two numbers x and y such that the product x^2y is maximum.
 - (b) Solve: $(xv^2 + x) dx + (vx^2 + v) dv = 0$
 - (c) Obtain the regression line of y on x from the following data:

	x	2	3	4	5	6
Ī	у	0.5	1.5	1.2	1.5	2.0

- 4. (a) The position vectors of two points A and B are $\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$ and $2\mathbf{i} + 5\mathbf{j} + 7\mathbf{k}$, respectively. Find the direction cosines of the vector AB.
 - (b) The marks in a seminar scored by 6 students in a competition are given below:

7, 5, 8, 4, 3 and 6

Test at 5% level of significance whether the average score is more than 5.

[Given: t(0.05, 5) = 2.02, t(0.05, 6) = 1.94]

(c) Find the sum

 $\left[\frac{1}{2} + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^{n-2}}\right] + \frac{1}{2 \times 3^{n-1}}.$ 3

5. (a) The balls contained in 3 urns are as follows:

Urn 1 - 6 Red 4 White

Urn 2 - 4 Red 6 White

Urn 3 - 3 Red 7 White

An urn is chosen randomly and a ball is drawn from it which was found to be red. Which urn is most likely to be selected?

- (b) Find $\frac{dy}{dx}$ when $y = 4 \sin^4 t$, $x = 4 \cos^4 t$.
- (c) The fourth and eleventh terms of an AP are 1 and 15, respectively. Obtain the nth term of the AP.

2

5

5

3

6. (a) A continuous random variable X has the PDF as

$$f(x) = kx (6 - x^2); 0 \le x \le 2$$

= 0, otherwise.

Find:

4

3

- (i) The value of k
- (ii) Mean of X
- (iii) Variance of X

(b) If
$$4^{1+x} + 4^{1-x} = 10$$
, find x.

(c) Find the equation of the tangent to the curve y(x-2)(x-3)-x+7=0 at the point where it cuts x-axis.

7. State whether the following statements are *true* or *false*, giving reasons in support of your answers. $5\times 2=10$

- (a) Given the regression lines x + 2y = 5 and 2x + 3y = 8, the mean of y is 2.
- (b) If two dice are thrown simultaneously, then the probability of getting same numbers on both the dice is $\frac{1}{5}$.

(c) The asymptote of the curve $(x^2 + y^2) x - ay^2 = 0$ (a > 0) parallel to y-axis is x + a = 0.

(d)
$$\lim_{x\to\infty}\frac{2x-1}{7x+5}=\frac{2}{7}.$$

(e) A(3, 1), B(9, 7) and C(-3, 7) are the vertices of a right-angled triangle.

स्नातक उपाधि कार्यक्रम (बी.डी.पी.) सत्रांत परीक्षा दिसम्बर, 2016

ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-03 : गणितीय विधियाँ

समय : २ घण्टे

अधिकतम अंक : 50

(कुल का 70%)

नोट: प्रश्न सं. 7 अनिवार्य है । शेष प्रश्न सं. 1 से 6 में से किन्हीं चार प्रश्नों के उत्तर दीजिए । कैल्कुलेटरों के प्रयोग करने की अनुमित नहीं है ।

- 1. (क) $f(x) = x^2 + 3x + 5$ द्वारा परिभाषित फलन $f: [1, 2] \rightarrow [5, 15]$ दिया गया है । जाँच कीजिए कि क्या f(x)
 - (i) एकैकी है,
 - (ii) आच्छादी है।

3

(ख) मूल्यांकन कीजिए:

3

 $\int_{0}^{1} \frac{\sin^{-1} x \, dx}{\sqrt{1-x^2}}$

(ग) एक गोलीबारी प्रतियोगिता में, एक गोली चलाने वाला 5 में से 4 बार गेंद प्राप्त कर सकता है । यदि उसे 3 शॉट दिए जाएँ तो उसके (i) ठीक एक बार, (ii) कम-से-कम दो बार, गेंद प्राप्त करने की संभावना क्या होगी ?

4

2. (क) नीचे दी गई तालिका में 100 परिवारों का प्रत्येक सप्ताह में उनके खर्चे के अनुसार बंटन दिया गया है । बंटन की माध्यिका 24 है । बारंबारताएँ f₁ और f₂ प्राप्त कीजिए ।

4

2

4

3

3

4

खर्चा (हजारों ₹ में)	परिवारों की संख्या
0 – 10	14
10 – 20	$\mathbf{f_1}$
20 - 30	27
30 – 40	$\mathbf{f_2}$
40 – 50	15

- (ख) मान लीजिए $\mathbf{z} = \mathbf{a}\mathbf{x}^2 + 2\mathbf{h}\mathbf{x}\mathbf{y} + \mathbf{b}\mathbf{y}^2$, जहाँ \mathbf{a} , \mathbf{b} और \mathbf{h} अचर हैं । जाँच कीजिए कि क्या $\frac{\partial^2 \mathbf{z}}{\partial \mathbf{x} \, \partial \mathbf{y}} = \frac{\partial^2 \mathbf{z}}{\partial \mathbf{v} \, \partial \mathbf{x}}$ ।
- (ग) एक गोले का समीकरण ज्ञात कीजिए जिसका केन्द्र रेखा $\frac{x}{3} = \frac{y}{2} = \frac{z}{-5} \quad \text{पर स्थित हो और जो बिंदुओं} \\ (0, -2, -4) और <math>(2, -1, -1)$ से होकर गुज़रता हो ।
- 3. (क) संख्या 30 को दो संख्याओं x और y में विभाजित कीजिए जिससे कि गुणनफल x^2y अधिकतम हो ।
 - (ख) हल कीजिए:

$$(xy^2 + x) dx + (yx^2 + y) dy = 0$$

(ग) निम्नलिखित आँकड़ों के लिए x पर y की समाश्रयण रेखा ज्ञात कीजिए :

x	2	3	4	5	6
у	0.5	1.5	1.2	1.5	2.0

4.	(क)	दो बिंदुओं A और B के स्थिति सदिश क्रमशः i + 3j + 4k और 2i + 5j + 7k हैं । सदिश AB की दिक्कोज्याएँ ज्ञात कीजिए ।	2
	(ख)	एक प्रतियोगिता में एक सेमिनार में 6 छात्रों द्वारा प्राप्त अंक निम्नलिखित हैं : 7, 5, 8, 4, 3 और 6	٠
		5% सार्थकता स्तर पर जाँच कीजिए कि क्या औसत प्राप्त अंक 5 से अधिक हैं।	
		[दिए गए हैं : t(0·05, 5) = 2·02, t(0·05, 6) = 1·94]	5
	(ग)	$\left[rac{1}{2}+rac{1}{3}+rac{1}{3^2}++rac{1}{3^{n-2}} ight]+rac{1}{2 imes 3^{n-1}}$ का योगफल प्राप्त कीजिए ।	3
5.	(क)	3 कलशों में गेंदें निम्नलिखित प्रकार से हैं : कलश 1 – 6 लाल 4 सफ़ेद	
		कलश 2 – 4 लाल 6 सफ़ेद	
		कलश 3 – 3 लाल 7 सफ़ेद	
		एक कलश यादृच्छया चुना गया और उसमें से एक गेंद	
		निकाली गई जो कि लाल रंग की थी । किस कलश के	
		चुने जाने की संभावना सबसे अधिक है ?	5
	(1 a)	\overline{u} \overline{c} $v = 4 \sin^4 t$ $v = 4 \cos^4 t$ \overline{g} \overline{d} $\frac{dy}{dy}$ \overline{g}	

(ग) एक समांतर श्रेढी का चौथा और ग्यारहवाँ पद क्रमशः 1 और 15 है। समांतर श्रेढी का nवाँ पद ज्ञात कीजिए।

कीजिए।

6. (क) एक संतत यादृच्छिक चर X का प्रायिकता बंटन फलन यह है

$$f(x) = kx (6 - x^2); 0 \le x \le 2$$

= 0, अन्यथा।

ज्ञात कीजिए:

4

3

3

- (i) k का मान
- (ii) X का माध्य
- (iii) X का प्रसरण

(ख) यदि
$$4^{1+x} + 4^{1-x} = 10$$
, तो x ज्ञात कीजिए।

(ग) जिस बिंदु पर वक्र

$$y(x-2)(x-3)-x+7=0$$

x-अक्ष को काटता है उस बिंदु पर वक्र की स्पर्श रेखा
का समीकरण ज्ञात कीजिए ।

- 7. अपने उत्तर के पक्ष में कारण देते हुए बताइए कि निम्नलिखित कथन सत्य हैं या असत्य हैं। $5\times2=10$
 - (क) समाश्रयण रेखाएँ x + 2y = 5 और 2x + 3y = 8 दी गई हों, तो y का माध्य 2 होगा ।
 - (ख) यदि दो पासे एक साथ फेंकें जाएँ, तो दोनों पासों पर एक ही संख्या प्राप्त होने की प्रायिकता $\frac{1}{5}$ है ।
 - (ग) बक्र $(x^2 + y^2)x ay^2 = 0$ (a > 0) का y-अक्ष के समांतर अनंतस्पर्शी x + a = 0 है ।
 - (u) $\lim_{x\to\infty} \frac{2x-1}{7x+5} = \frac{2}{7}.$
 - (ङ) A(3, 1), B(9, 7) और C(-3, 7) एक समकोण त्रिभुज के शीर्ष हैं।