No. of Printed Pages: 8

MTE-02

BACHELOR'S DEGREE PROGRAMME (BDP)

01164

Term-End Examination
December, 2016

ELECTIVE COURSE: MATHEMATICS
MTE-02: LINEAR ALGEBRA

Time: 2 hours

Maximum Marks: 50

(Weightage 70%)

Note: Question no. 7 is compulsory. Answer any four questions from Questions no. 1 to 6. Use of calculators is not allowed.

- 1. (a) Consider the real vector space $\mathbf{M}_{\mathbf{n}}(\mathbf{R})$, of all $\mathbf{n} \times \mathbf{n}$ matrices with entries from the set of real numbers with respect to the usual addition and scalar multiplication of matrices. Find the smallest subspace of $\mathbf{M}_{\mathbf{n}}(\mathbf{R})$ which contains the identity matrix. Also show that the set of all symmetric matrices is a subspace of $\mathbf{M}_{\mathbf{n}}(\mathbf{R})$.
 - (b) Show that the map: $T: \mathbf{R}^4 \to \mathbf{R}^2$ given by $T(\mathbf{x}_1, \ \mathbf{x}_2, \ \mathbf{x}_3, \ \mathbf{x}_4) = (2\mathbf{x}_1 + \mathbf{x}_3, \ 2\mathbf{x}_3 + \mathbf{x}_1)$ is a linear transformation. Find its image and the kernel.

5

- 2. (a) Show that if u_1 , u_2 , u_3 , u_4 are linearly independent vectors in a vector space V over a field K, then $u_1 + u_2$, $u_3 u_4$, $u_4 + u_1$ are also linearly independent.
 - (b) Show that the matrix $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ is congruent to the identity matrix.

2

5

4

- (c) Use the Cayley-Hamilton theorem to find the inverse of the matrix $\begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix}$.
- 3. (a) Consider the real vector space $A=\{(a,\,b,\,c,\,d)\mid a,\,b,\,c,\,d\in I\!\!R,\,2a+3b=c+d\}.$ Find dim A. Also find two distinct subspaces $B_1 \text{ and } B_2 \text{ of } I\!\!R^4 \text{ such that}$

$$\mathbf{A} \oplus \mathbf{B}_1 = \mathbf{R}^4 = \mathbf{A} \oplus \mathbf{B}_2. \tag{6}$$

- (b) Using the Gram-Schmidt procedure, find an orthonormal basis of \mathbb{C}^3 corresponding to the ordered basis $\{(1, 1, 1), (1, 1, 0), (i, 0, 0)\}$.
- 4. (a) Let T be a linear operator whose matrix with respect to the standard basis is given by

 \[\begin{bmatrix} 2 & 1 & 1 \]
 \end{bmatrix}

$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
. Obtain the matrix of T with

respect to the basis
$$\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$$
.

(b) Find the orthogonal canonical form to which the following quadratic form can be reduced. Also obtain a set of principal axes.

$$x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_2x_3 - 2x_3x_1$$
 7

5. (a) Find the eigenvalues and eigenvectors for the matrix $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$. Also decide if

A is diagonalisable.

5

3

(b) Find the domain of the function f, defined by $f(x) = \frac{x}{\sqrt{5-x}}$. Check whether or not 2 is in the range of f.

(c) Give an example, with justification, of a binary operation which is not associative. 2

6. (a) Can Cramer's rule be used to solve the following system of equations? If yes, use the rule to solve it. If not, solve the system using the Gaussian elimination method.

$$2x + 3y + z = 7$$

 $x - 3 = 2y - 2z$
 $3x - y - 4 + z = 0$

(b) Prove that $C^4/C \simeq C^3$.

- 7. Which of the following statements are *True* and which are *False*? Justify your answer with a short proof or by a counter-example. $5\times2=10$
 - (a) The operation *, defined by x * y = log(xy) is a binary operation on S, where $S = \{x \in \mathbb{R} \mid x > 0\}.$
 - (b) If α and β are eigenvalues of two $n \times n$ matrices A and B respectively, then $\alpha + \beta$ is an eigenvalue of A + B.
 - (c) If S and T are linear transformations such that SoT is defined and is 1-1, then S is 1-1.
 - (d) $T: \mathbf{R}^3 \times \mathbf{R}^3 \to \mathbf{R}: T((x_1, x_2, x_3), (y_1, y_2, y_3)) =$ $(x_1 + x_2 + x_3) \cdot (y_1 + y_2 + y_3)$ is an inner product on \mathbf{R}^3 .
 - (e) $\{India, -5, Jamila\}$ is a set.

स्नातक उपाधि कार्यक्रम (बी.डी.पी.) सत्रांत परीक्षा दिसम्बर, 2016

ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-02 : रैखिक बीजगणित

समय : 2 घण्टे

अधिकतम अंक : 50

(कुल का 70%)

नोट: प्रश्न सं. 7 करना ज़रूरी है। प्रश्न सं. 1 से 6 में से किन्हीं चार प्रश्नों के उत्तर दीजिए। कैल्कुलेटरों के प्रयोग करने की अनुमति नहीं है।

- 1. (क) आव्यूहों की सामान्य जमा और अदिश गुणन के सापेक्ष वास्तविक संख्याओं के समुच्चय से प्रविष्टियों वाले सभी $\mathbf{n} \times \mathbf{n}$ आव्यूहों की वास्तविक सदिश समष्टि $\mathbf{M_n}(\mathbf{R})$ लीजिए । $\mathbf{M_n}(\mathbf{R})$ की ऐसी सबसे छोटी उपसमष्टि ज्ञात कीजिए जिसमें तत्समक आव्यूह हो । यह भी दिखाइए कि सभी सममित आव्यूहों का समुच्चय $\mathbf{M_n}(\mathbf{R})$ की उपसमष्टि है ।
 - (ख) दिखाइए कि $T(\mathbf{x}_1,\,\mathbf{x}_2,\,\mathbf{x}_3,\,\mathbf{x}_4)=(2\mathbf{x}_1+\mathbf{x}_3,\,2\mathbf{x}_3+\mathbf{x}_1)$ द्वारा दिया गया प्रतिचित्र : $\mathbf{T}:\mathbf{R}^4\to\mathbf{R}^2$ रैखिक रूपांतरण है ।

इसका प्रतिबिंब और अष्टि ज्ञात कीजिए ।

5

(क)		
	_	
٠	$\mathbf{u_3} - \mathbf{u_4}, \mathbf{u_4} + \mathbf{u_1}$ भी रैखिकतः स्वतंत्र हैं ।	2
(ख)	Ļ	
	सर्वांगसम है ।	5
	$\begin{bmatrix} 3 & 1 & 1 \end{bmatrix}$	
(ग <u>)</u>	आव्यूह 1 3 1 का प्रतिलोम ज्ञात करने के लिए	
	$\begin{bmatrix} 1 & 1 & 3 \end{bmatrix}$	
	कैली-हैमिल्टन प्रमेय का प्रयोग कीजिए।	3
(क)	वास्तविक सदिश समष्टि	
	$A = \{(a, b, c, d) \mid a, b, c, d \in \mathbb{R}, 2a + 3b = c + d\}$	
	लीजिए । $\dim A$ ज्ञात कीजिए । ${f R}^4$ की ऐसी दो	
	अलग-अलग उपसमष्टियाँ $f B_1$ और $f B_2$ भी ज्ञात कीजिए	
	जिनके लिए $A \oplus B_1 = \mathbf{R}^4 = A \oplus B_2$.	6
(ख)		
	{(1, 1, 1), (1, 1, 0), (i, 0, 0)} के सगत C ³ का	,
· /\	•	4
(क)	मान लाजिए 1 एसा राखक सकारक ह, जिसका	
	आव्यूह मानक आधार के सापेक्ष 1 1 1 द्वारा	
	$\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$	
	$\lceil 1 \rceil \lceil 1 \rceil \lceil 1 \rceil$	
	दिया गया है । आधार $\left\{ \begin{array}{c c} 1 & 1 & 0 \end{array} \right\}$ के	
	$\begin{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \end{bmatrix}$	
	सापेक्ष T का आव्यूह प्राप्त कीजिए ।	3
	(ख) (可) (क)	(ग) आव्यूह $\begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix}$ का प्रतिलोम ज्ञात करने के लिए केली-हैमिल्टन प्रमेय का प्रयोग कीजिए । (क) वास्तविक सदिश समष्टि $A = \{(a, b, c, d) \mid a, b, c, d \in \mathbf{R}, 2a + 3b = c + d\}$ लीजिए । $\dim A$ ज्ञात कीजिए । \mathbf{R}^4 की ऐसी दो अलग-अलग उपसमष्टियाँ B_1 और B_2 भी ज्ञात कीजिए जिनके लिए $A \oplus B_1 = \mathbf{R}^4 = A \oplus B_2$. (ख) ग्राम-श्मिट प्रक्रम का प्रयोग करके क्रमित आधार $\{(1, 1, 1), (1, 1, 0), (i, 0, 0)\}$ के संगत \mathbf{C}^3 का प्रसामान्य लांबिक आधार ज्ञांत कीजिए । (क) मान लीजिए \mathbf{T} ऐसा रैखिक संकारक है, जिसका अव्यूह मानक आधार के सापेक्ष $\begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ द्वारा दिया गया है । आधार $\{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ के $\{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ के $\{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ के $\{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ के $\{(1, 1, 1), (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$

(ख) वह लांबिक विहित समघात ज्ञात कीजिए जिससे निम्नलिखित द्विघाती समघात समानीत हो सकता है। निम्नलिखित मुख्य अक्षों का समुच्चय भी प्राप्त कीजिए:

$$x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_2x_3 - 2x_3x_1$$
 7

5. (क) आव्यूह
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 के आइगेनमान और

आइगेनसदिश ज्ञात कीजिए । यह भी निर्धारित कीजिए कि A विकर्णनीय है ।

5

3

2

- (ख) $f(x) = \frac{x}{\sqrt{5-x}}$ द्वारा परिभाषित फलन f का प्रांत ज्ञात कीजिए । यह भी ज्ञात कीजिए कि क्या 2, f के गोचर (परिसर) में है ।
- (ग) पुष्टि सहित एक ऐसी द्वि-आधारी संक्रिया का उदाहरण दीजिए जो सहचारी नहीं है।
- 6. (क) निम्नलिखित समीकरण निकाय को हल करने के लिए क्या क्रेमर नियम का प्रयोग किया जा सकता है ? यदि हाँ, तो इसे हल करने के लिए इस नियम का प्रयोग कीजिए । यदि नहीं, तो गाउसीय निराकरण विधि से निकाय को हल कीजिए ।

$$2x + 3y + z = 7$$

 $x - 3 = 2y - 2z$
 $3x - y - 4 + z = 0$

(ख) सिद्ध कीजिए कि
$$C^4/C \simeq C^3$$
.

MTE-02 7 P.T.O.

- 7. निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से कथन असत्य ? लघु उपपत्ति या प्रति-उदाहरण के साथ अपने उत्तर की पुष्टि कीजिए। $5\times2=10$
 - (क) $x * y = \log(xy)$ द्वारा परिभाषित संक्रिया *, S पर द्वि-आधारी संक्रिया है, जहाँ $S = \{x \in \mathbf{R} \mid x > 0\}.$
 - (ख) यदि α और β दो $n \times n$ आव्यूहों क्रमशः A और B के आइगेनमान हैं, तब $\alpha + \beta$, A + B का आइगेनमान है ।
 - (ग) यदि S और T ऐसे रैखिक रूपांतरण हैं जिनके लिए SoT परिभाषित है और 1-1 है, तब $S,\,1-1$ होगा।
 - (घ) $T: \mathbf{R}^3 \times \mathbf{R}^3 \to \mathbf{R}: T((x_1, x_2, x_3), (y_1, y_2, y_3)) =$ $(x_1 + x_2 + x_3) \cdot (y_1 + y_2 + y_3)$ \mathbf{R}^3 पर आंतरिक गुणनफल है ।
 - (ङ) {India, 5, Jamila} एक समुच्चय है ।