B.Tech. - VIEP - MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination
December, 2016

$\square \square 93$

BIMEE-004 : OPTIMIZATION TECHNIQUES IN ENGINEERING

Time: 3 hours
Maximum Marks : 70
Note: Answer any five questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. A pharmaceutical company has 100 kg of chemical A, 180 kg of B and 120 kg of C available per month. They can use these chemicals to make three pharmaceutical products, namely, 5-10-5, 5-5-10 and 20-5-10, where the numbers in each case represent the percentage by weight of A, B and C respectively in each of the products. The cost of these raw materials are given below :

Ingredient	Cost per kg (₹)
A	80
B	20
C	50
Inert Ingredients	20

Selling prices of the three products are ₹ $40 \cdot 50$, ₹ 43 and ₹ 45 per kg respectively. There is a capacity restriction of the company for the product $5-10-5$, as they cannot produce more than 80 kg per month. Determine how much of each of the products they should produce in order to maximize their monthly profit.
2. (a) Explain the direct search method for optimizing multivariable function with equality constraint using a suitable example.
(b) Describe the iterative procedure for the solution of a quadratic programming problem by Wolfe's modified simplex method.
3. Using stepping-stone method, find the optimum solution for the following transportation problem :

Distribution Centres

Sources	D_{1}	D_{2}	D_{3}	D_{4}	Supply
S_{1}	2	3	11	7	6
$\mathrm{~S}_{2}$	1	0	6	1	2
$\mathrm{~S}_{3}$	5	8	15	9	10
Requirements	7	5	3	2	-

BIMEE-004
4. (a) With the help of a suitable example, explain the Minimax and Maximin Algorithm for decision-making.
(b) A length of wire, 1 m long, is to be divided into two pieces, one in a circular shape and the other into a square, having radius ' r ' and of side ' b ' respectively. Find the individual length so that the total area is minimum.
5. (a) Evaluate $\int_{0}^{9} \frac{d x}{1+x^{2}}$ by using
(i) Simpson's $\frac{1}{3}$ rule, and
(ii) Simpson's $\frac{3}{8}$ rule.
(b) Using Newton-Raphson method, find the real root of the equation $3 x=\cos x+1$.
6. (a) What is dynamic programming ? What types of optimization problems can be solved by dynamic programming ? Explain.
(b) Differentiate between constrained and unconstrained problems with the help of examples.
7. Write short notes on any two of the following :
$2 \times 7=14$
(a) Integer Programming
(b) Stochastic Programming
(c) Genetic Algorithms

