No. of Printed Pages: 4

BIMEE-004

B.Tech. - VIEP - MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination December, 2016

22600

BIMEE-004 : OPTIMIZATION TECHNIQUES IN ENGINEERING

Time : 3 hours

Maximum Marks : 70

Note : Answer any **five** questions. All questions carry equal marks. Use of scientific calculator is permitted.

 A pharmaceutical company has 100 kg of chemical A, 180 kg of B and 120 kg of C available per month. They can use these chemicals to make three pharmaceutical products, namely, 5-10-5, 5-5-10 and 20-5-10, where the numbers in each case represent the percentage by weight of A, B and C respectively in each of the products. The cost of these raw materials are given below :

Ingredient	Cost per kg (₹)		
Α	80		
В	20		
C C	50		
Inert Ingredients	20		

BIMEE-004

P.T.O.

Selling prices of the three products are ₹ 40.50, ₹ 43 and ₹ 45 per kg respectively. There is a capacity restriction of the company for the product 5-10-5, as they cannot produce more than 80 kg per month. Determine how much of each of the products they should produce in order to maximize their monthly profit.

14

7

7

14

- 2. (a) Explain the direct search method for optimizing multivariable function with equality constraint using a suitable example.
 - (b) Describe the iterative procedure for the solution of a quadratic programming problem by Wolfe's modified simplex method.
- **3.** Using stepping-stone method, find the optimum solution for the following transportation problem :

Sources	D ₁	D ₂	D ₃	D ₄	Supply
S ₁	2	3	11	[•] 7	6
S2	1	0	6	1	2
S ₃	5	8	15	9	10
Requirements	7	5	3	2	_

Distribution Centres

BIMEE-004

2

- (a) With the help of a suitable example, explain the Minimax and Maximin Algorithm for decision-making.
- (b) A length of wire, 1 m long, is to be divided into two pieces, one in a circular shape and the other into a square, having radius 'r' and of side 'b' respectively. Find the individual length so that the total area is minimum.

5. (a) Evaluate $\int_{0}^{9} \frac{dx}{1+x^2}$ by using

- (i) Simpson's ¹/₃ rule, and
 (ii) Simpson's ³/₉ rule.
- (b) Using Newton-Raphson method, find the real root of the equation $3x = \cos x + 1$.
- 6. (a) What is dynamic programming ? What types of optimization problems can be solved by dynamic programming ? Explain.
 - (b) Differentiate between constrained and unconstrained problems with the help of examples.

BIMEE-004

4.

P.T.O.

7

7

7

7

7

7

7. Write short notes on any *two* of the following: $2 \times 7 = 14$

- (a) Integer Programming
- (b) Stochastic Programming
- (c) Genetic Algorithms