DIPLOMA－VIEP－MECHANICAL ENGINEERING（DMEVI）

Term－End Examination
ロロマ12
December， 2016

BIME－026 ：HEAT TRANSFER

Time： 2 hours
Maximum Marks ： 70
Note：Attempt any five questions．All questions carry equal marks．The use of scientific calculator is allowed．

1．（a）What are the different modes of heat transfer ？How do these modes of heat transfer differ？
（b）Differentiate between dropwise and filmwise condensation．

2．（a）．Find the expression for heat conducted（q） through a slab of thickness（L）， cross－sectional area（A）having temperatures T_{1} and T_{2} at both ends for steady state．
（b）How do thermal conductivities of gases and liquids vary with temperature？
3. (a) Describe Stefan-Bultzmann's law.
(b) A black body of surface area $2 \times 10^{-3} \mathrm{~m}^{2}$ is heated to $127^{\circ} \mathrm{C}$ and is suspended in a room having temperature $27^{\circ} \mathrm{C}$. Find the initial rate of loss of heat from the black body.
4. (a) Explain electrical analogy for heat transfer. Find the thermal resistance for conduction and convection heat transfer.
(b) An electric heater emits 1000 watts of thermal radiation. The filament has surface area $0.06 \mathrm{~m}^{2}$ and may be presumed as a black body. Find its temperature, if $\sigma=6 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$.
5. (a) Describe briefly the thermal boundary layer over a flat plate with flow of fluid.
(b) A hollow cylinder has inside radius 2.5 cm and outside radius 5 cm . Inside temperature is $300^{\circ} \mathrm{C}$ and outside temperature is $110^{\circ} \mathrm{C}$. Find the temperature at 3.75 cm from the centre, if $\mathrm{K}=70 \mathrm{~W} / \mathrm{m}-\mathrm{K}$. Also find the heat flow through the cylinder, per unit length.
6. (a) What do you understand by 'black body'? Is ice a black body? Justify your answer.
(b) Explain the various regimes of the saturated pool boiling. $\quad 7+7$
7. (a) What is Kirchhoffs law of radiation ? Explain.
(b) Prove that the shape factor of the cylindrical cavity as shown in Figure 1 is $\frac{4 h}{4 h+d}$.

Figure 1

