No. of Printed Pages : 3

OIEE-002

DIPLOMA IN ELECTRICAL ENGINEERING

Term-End Examination December, 2016

OIEE-002 : ELECTRICAL ENGINEERING MATERIALS

Time : 2 hours

Maximum Marks: 70

- Note: Answer any five questions. All questions carry equal marks. Symbols used have their usual meaning.
- 1. Derive the expression for the power dissipated per cubic metre per second in a conductor carrying a current density J as a result of an applied electric field E.

14

2. What is superconductivity ? Draw the curve of resistivity vs temperature for normal metal and pure superconductor. Discuss the effect of the magnetic field on superconductor.

OIEE-002

P.T.O.

14

- 3. Show that a semiconductor has a minimum conductivity at a given temperature where $n_c = n_i \sqrt{\frac{\mu_n}{\mu_c}}$ and find the minimum value of conductivity. Also find the minimum conductivity for germanium at a temperature given that $n_i = 2.5 \times 10^{19}/m^3$, $\mu_c = 0.38 m^2/v-s$ and $\mu_n = 0.19 m^2/v-s$.
 - 4. Name the conducting materials used in making the following (Give reasons for your answer): $4 \times 3 \frac{1}{2} = 14$
 - (a) Overhead transmission line
 - (b) Starter elements used in starting d.c. motors
 - (c) Heating elements of irons
 - (d) Brushes for electrical machines
 - 5. What is meant by dielectric strength ? With the help of a neat sketch of the apparatus used for testing of transformer oil, explain the method of determining the dielectric strength of the transformer oil.
 - 6. Define the term 'Polarisation'. Discuss ionic and electronic polarisation. Also draw the curve showing the dependency of polarizability on the frequency of the applied alternating electric field. 14

OIEE-002

14

14

- 7. (a) What are domains in ferromagnetic materials?
 - (b) Give an account of the origin of permanent magnetic dipoles in matter. 7+7=14
- 8. Write short notes on the following : $2 \times 7 = 14$
 - (a) Various important properties of insulating materials
 - (b) Dielectric breakdown mechanism in gases

OIEE-002

1,000