DECVI / DELVI / DCSVI / ACECVI / ACELVI / ACCSVI

na923
Term-End Examination
December, 2016

OIEE-001 : BASICS OF ELECTRICAL ENGINEERING

Time: 2 hours Maximum Marks : 70
Note: Attempt any five questions. Question no. 1 is compulsory.

State whether the following statements are True or
False: $\quad 7 \times 2=14$

1. (a) The resistance of a conductor increases, if its area of cross-section increases. [T/F]
(b) Three resistances of $\mathrm{R} \Omega$ each are connected in delta. Its equivalent star will comprise resistance of value $R / 3$ each. [T/F]
(c) The superposition theorem is applicable to only linear circuits. [T/F]
(d) Magnetic flux density (B) is the ratio of cross-sectional area (A) to the magnetic flux (ϕ). [T/F]
(e) The power factor of a purely resistive circuit is unity. [T/F]
(f) In case of 3 -phase Δ connected circuit, the total power is given by $\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \phi$. [T/F]
(g) The unit of electrical energy is kW . [T/F]
2. (a) Define power factor. Explain the concept of power triangle with the help of power factor.
(b) Calculate the value of form factor of a half wave rectified waveform.
3. (a) Derive an expression for the half cycle average value for sinusoidal current $i(t) I_{m} \sin \omega t$.
(b) In the circuit shown, determine :
(i) the current supplied by the 100 V source, and (ii) the voltage across the 6Ω resistor.

4. (a) State and explain Kirchhoff's voltage and current laws.
(b) Compare primary and secondary cells.
5. (a) Derive the relations for conversion from delta to star connection for three-phase impedance.
(b) State and explain superposition theorem with the help of a suitable example.
6. (a) A coil with 250 turns carries a current of 2 A , and produces a flux of 0.3 mWb . When this current is reduced to zero in 2 ms , the voltage induced in a nearby coil is 60 volts. Calculate (i) the self-inductance of each coil, and (ii) mutual inductance of coils. Assume coefficient of coupling $=0.7$.
(b) Give the comparison between electric and magnetic circuits.
7. Write short notes on any four of the following :

$$
4 \times 3 \frac{1}{2}=14
$$

(a) Advantages of 3-ф over 1- ϕ system
(b) Reluctance
(c) Lenz's Law
(d) Hysteresis Loop
(e) Fleming's Right-Hand Rule
(f) Series Resonance

