DECVI / DELVI / DCSVI / ACECVI / ACELVI / ACCSVI

00923

Term-End Examination December, 2016

OIEE-001: BASICS OF ELECTRICAL ENGINEERING

Time: 2 hours Maximum Marks: 70

Note: Attempt any five questions. Question no. 1 is compulsory.

State whether the following statements are True or False: $7\times2=14$

- 1. (a) The resistance of a conductor increases, if its area of cross-section increases. [T/F]
 - (b) Three resistances of R Ω each are connected in delta. Its equivalent star will comprise resistance of value R/3 each. [T/F]
 - (c) The superposition theorem is applicable to only linear circuits. [T/F]
 - (d) Magnetic flux density (B) is the ratio of cross-sectional area (A) to the magnetic flux (φ). [T/F]
 - (e) The power factor of a purely resistive circuit is unity. [T/F]
 - (f) In case of 3-phase Δ connected circuit, the total power is given by $\sqrt{3}$ V_L I_L $\cos \phi$. [T/F]
 - (g) The unit of electrical energy is kW. [T/F]

- 2. (a) Define power factor. Explain the concept of power triangle with the help of power factor.
 - (b) Calculate the value of form factor of a half wave rectified waveform.

7

7

7

7

7

7

7

- 3. (a) Derive an expression for the half cycle average value for sinusoidal current i(t) $I_m \sin \omega t$.
 - (b) In the circuit shown, determine : (i) the current supplied by the 100 V source, and (ii) the voltage across the 6 Ω resistor.

- 4. (a) State and explain Kirchhoff's voltage and current laws.
 - (b) Compare primary and secondary cells.
- **5.** (a) Derive the relations for conversion from delta to star connection for three-phase impedance.
 - (b) State and explain superposition theorem with the help of a suitable example.

- 6. (a) A coil with 250 turns carries a current of 2 A, and produces a flux of 0·3 mWb. When this current is reduced to zero in 2 ms, the voltage induced in a nearby coil is 60 volts. Calculate (i) the self-inductance of each coil, and (ii) mutual inductance of coils. Assume coefficient of coupling = 0·7.
 - (b) Give the comparison between electric and magnetic circuits.
- 7. Write short notes on any **four** of the following: $4 \times 3\frac{1}{2} = 14$
 - (a) Advantages of 3- ϕ over 1- ϕ system
 - (b) Reluctance
 - (c) Lenz's Law
 - (d) Hysteresis Loop
 - (e) Fleming's Right-Hand Rule
 - (f) Series Resonance

8

6