No. of Printed Pages : 3

BIEEE-012

B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination

00283 December, 2016

BIEEE-012 : ACTIVE FILTER DESIGN

Time: 3 hours

Maximum Marks: 70

Note :	(i)	Attempt any seven questions.
	(ii)	All questions carry equal marks.
	(iii)	Use of scientific calculator is permitted.
	(iv)	Missing data may be suitably assumed.

 What are the advantages and limitations of active filters ? Realize the following specification with a maximally flat magnitude response :

> $\alpha_{\min} = 18 \text{ dB},$ $\alpha_{\max} = 0.25 \text{ dB},$ $\omega_{p} = 1000 \text{ rad/sec},$ $\omega_{q} = 1400 \text{ rad/sec}.$

BIEEE-012

1

10

2. Determine the input impedance (Z_{in}) for the circuit shown in Figure 1. Also draw the passive equivalent of the circuit.

10

10

Figure 1

- 3. Design a 2-pole Butterworth low pass filter with cut-off frequency of 100 kHz. What is the formula for its gain as a function of frequency? What is the attenuation (in dB) at $f = 5 f_c$? 10
- 4. What is OPAMP? Also explain the characteristics of an Ideal OPAMP.
- 5. What is the use of bridged-T Network in active filters? Explain with examples. 10
- 6. Realize and draw a schematic circuit for a second order finite gain single amplifier active RC band pass filter. Obtain expressions for ω_n and Q in terms of circuit parameters. 10

BIEEE-012

- 7. Design a single amplifier biquad with $f_0 = 5$ kHz, $Q_0 = 15$, midband gain H = 36 dB and C = 5 nF. Draw the resulting circuit. 10
- 8. What do you understand by "Universal Active Filter" ? Give the categorization of multiple OPAMP filters and also write their advantages and disadvantages.
- 9. Give the structure of LP, HP and BP. Explain each of them. 10
- **10.** Write short notes on any *two* of the following: $2 \times 5 = 10$
 - (a) Inverse Chebyshev Approximations
 - (b) Frequency-dependent Negative Resistors
 - (c) Cascading Technique

BIEEE-012

1,000

10