No. of Printed Pages : 2

BIEEE-008

B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination

00683

December, 2016

BIEEE-008 : FLEXIBLE AC TRANSMISSION SYSTEM

Time : 3 hours

Maximum Marks : 70

Note : Attempt **five** questions in all. All questions carry equal marks. Use of scientific calculator is permitted.

1.	(a)	Draw and explain the voltage and current profile for uncompensated transmission	
		lines under no load.	7
	(b)	Compare Active and Passive compensators.	7
2.	(a)	Explain the constraints of maximum transmission line loading.	7
	(b)	Explain transient free switching in TSC.	7
3.	(a)	Explain STATCOM in detail.	7
	(b)	Discuss the working of UPFC with the help of a neat diagram.	7
			-

BIEEE-008

P.T.O.

- (a) What are custom power devices ? Mention their examples and explain any one of them in brief.
 - (b) Explain Thyristor Controlled Braking Resistor (TCBR) in terms of equal area criterion for transient stability.
- 5. (a) Discuss in detail the operation of Interline Power Flow Controller (IPFC) and its importance.
 - (b) What are shunt reactors ? How are multiple reactors placed to achieve line compensation ?
- 6. (a) Explain the need of filters in thyristor based compensators.
 - (b) Give the principle, operation and control of TCVR with the help of a suitable diagram.
- 7. (a) With a relevant diagram, explain the construction and working of Static Series Synchronous Compensator (SSSC).
 - (b) Compare TCR-TSC on the basis of VI and VQ characteristics and losses.

BIEEE-008

1,000

7

7

7

7

7

7

7

7

2