No. of Printed Pages: 3

BIEEE-007

B.Tech. – VIEP – ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination

00913

December, 2016

BIEEE-007 : COMPUTER APPLICATIONS IN POWER SYSTEMS

Time : 3 hours

Maximum Marks: 70

- **Note :** Attempt **five** questions in all. All questions carry equal marks. Assume any data, if missing. Use of scientific calculator is allowed.
- 1. (a) Explain in detail the terms production costs, total efficiency, incremental efficiency and incremental rates with respect to a thermal power plant.
 - (b) Explain clearly with a flow chart the computational procedure for load flow solution using Gauss-Seidel method when the system contains all types of buses.

BIEEE-007

7

7

2. Figure 1 shows a five-bus power system. Each line has an impedance of 0.05 + j0.15 pu. The line shunt admittance may be neglected. The bus power and voltage specifications are given below :

Bus No.	P _D	Q _D (pu)	P _G (pu)	Q _G (pu)	V (pu)	Bus Specification
1	1	0.2	-		1·02 + j 0	Slack
2	0	0	2		1.02	PV
3	0.2	0.5	0	0	-	PQ
4	0.5	0.2	0	0		PQ
5	0.2	0.2	0	0	-	PQ

Figure 1

- (a) Develop Y_{BUS} matrix.
- (b) Find Q_2 , δ_2 , V_3 , V_4 and V_5 after first iteration using GS method. Assume $Q_{2 \min} = 0.2$ pu and $Q_{2 \max} = 0.6$ pu.

5+9=14

BIEEE-007

3.	(a)	What is an oriented graph ? Explainincidence matrix with an example.5				
	(b)	What are the different components of a power system? 5				
	(c)	Explain demand side management. 4				
4.	(a)	Write the advantages and disadvantages of Newton-Raphson (N-R) method. 7				
	(b)	What do you mean by load flow study? What information is obtained from a load flow study? 7				
5.	Expl solu	ain the Gauss-Siedel method for load flow tion using nodal admittance approach for the				
	form	ulation of load flow equations. 14				
6.	(a)	Explain the contingency analysis for interconnectors. 7				
	(b)	Write down the principle of operation of transformers and derive the formula for percentage copper saving in comparison to two-winding transformers. 7				
7.	Write short notes on any two of the following: $2 \times 7 = 14$					
	(a)	Tap Changing Transformer				
	(b)	Concept of Decoupled Method				
	(c)	Transmission Losses				
		- 				

3

BIEEE-007

1,000