B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination

뫂3 December, 2016

BIEEE-007 : COMPUTER APPLICATIONS IN POWER SYSTEMS

Note: Attempt five questions in all. All questions carry equal marks. Assume any data, if missing. Use of scientific calculator is allowed.

1. (a) Explain in detail the terms production costs, total efficiency, incremental efficiency and incremental rates with respect to a thermal power plant.
(b) Explain clearly with a flow chart the computational procedure for load flow solution using Gauss-Seidel method when the system contains all types of buses.
2. Figure 1 shows a five-bus power system. Each line has an impedance of $0 \cdot 05+\mathrm{j} 0 \cdot 15 \mathrm{pu}$. The line shunt admittance may be neglected. The bus power and voltage specifications are given below :

Bus No.	P_{D}	Q_{D} (pu)	P_{G} (pu)	Q_{G} (pu)	V (pu)	Bus Specification
1	1	0.5	-	-	$1.02+\mathrm{j} 0$	Slack
2	0	0	2	-	1.02	PV
3	0.5	0.2	0	0	-	PQ
4	0.5	0.2	0	0	-	PQ
5	0.5	0.2	0	0	-	PQ

Figure 1

(a) Develop $Y_{\text {BUS }}$ matrix.
(b) Find $Q_{2}, \delta_{2}, V_{3}, V_{4}$ and V_{5} after first iteration using GS method.
Assume $Q_{2 \text { min }}=0.2 \mathrm{pu}$ and $Q_{2 \max }=0.6 \mathrm{pu}$.

$$
5+9=14
$$

3. (a) What is an oriented graph ? Explain incidence matrix with an example. 5
(b) What are the different components of a power system? 5
(c) Explain demand side management. 4
4. (a) Write the advantages and disadvantages of Newton-Raphson (N-R) method. 7
(b) What do you mean by load flow study?What information is obtained from a loadflow study?7
5. Explain the Gauss-Siedel method for load flow solution using nodal admittance approach for the formulation of load flow equations.14
6. (a) Explain the contingency analysis for
interconnectors.
(b) Write down the principle of operation of transformers and derive the formula for percentage copper saving in comparison to two-winding transformers.
7. Write short notes on any two of the following :
$2 \times 7=14$
(a) Tap Changing Transformer
(b) Concept of Decoupled Method
(c) Transmission Losses
