No. of Printed Pages : 5

BIEE-033

DIPLOMA IN ELECTRICAL ENGINEERING (DELVI)

Term-End Examination

00313

December, 2016

BIEE-033 ; ELECTRICAL CIRCUIT THEORY

Time : 2 hours

Maximum Marks: 70

Note: Attempt any five questions. Question no. 1 is compulsory. All questions carry equal marks. Use of scientific calculator is allowed. Assume missing data, if any.

- **1.** Select the most appropriate alternative. $7 \times 2 = 14$
 - (a) A network is said to be non-linear if it does *not* satisfy
 - (i) Superposition condition
 - (ii) Homogeneity condition
 - (iii) Associative condition
 - (iv) Both Superposition and Homogeneity conditions
 - (b) The superposition theorem is applicable to
 - (i) Current only
 - (ii) Voltage only
 - (iii) Both voltage and current
 - (iv) Voltage, current and power

BIEE-033

P.T.O.

- (c) When a source is delivering maximum power to load, the efficiency of a circuit
 - (i) is always 50%
 - (ii) depends upon circuit parameters
 - (iii) is always 75%
 - (iv) None of these
- (d) In RLC circuit, the current at Resonance is
 - (i) maximum in series circuit and minimum in parallel circuit
 - (ii) maximum in parallel circuit and minimum in series circuit
 - (iii) maximum in both the circuits
 - (iv) minimum in both the circuits
- (e) To neglect a voltage source, the terminals across the source are
 - (i) short-circuited
 - (ii) open-circuited
 - (iii) replaced by a capacitor
 - (iv) None of these

(f) Power factor of a pure capacitor is

- (i) unity
- (ii) zero
- (iii) 0.707 leading
- (iv) 0.707 lagging

BIEE-033

- (g) According to the statement of KCL, at any node
 - (i) outgoing currents are greater than incoming currents
 - (ii) outgoing currents are less than incoming currents
 - (iii) outgoing currents are equal to incoming currents
 - (iv) None of these
- 2. (a) Using the star-delta transformation technique, find the equivalent resistance of the circuit shown in Figure 1 at the terminals A and B.

Figure 1

(b)

In a series RLC circuit, if the magnitude of voltage across the inductance is 362 volts at resonance, what is the power factor and voltage across the capacitor at resonance?

BIEE-033

P.T.O.

7

- (a) What do you understand by quality factor of a circuit ? Establish the relation between bandwidth, quality factor and resonant frequency of a resonant circuit.
 - (b) For the circuit shown in Figure 2, determine the active power and apparent power.

Figure 2

7

7

7

4. (a)

Determine the Thevenin equivalent of the circuit across AB terminals as shown in Figure 3.

Figure 3

(b) Draw the Norton's equivalent circuit for the given network as shown in Figure 4 at A and B.

Figure 4

- 5. (a) Draw the phasor diagrams for (i) RL circuit, and (ii) RC circuit.
 - (b) Find the heat dissipated by a 30 Ω resistor, if it carries a current of i = 10 sin 314 t.
- 6. (a) State, prove and explain maximum power transfer theorem.
 - (b) Differentiate between series and parallel resonance.
- 7. Write short notes on any *two* of the following: $2 \times 7 = 14$
 - (a) Duality and Dual Networks
 - (b) Types of Dependent Sources
 - (c) Half-power Frequencies and Bandwidth of Resonant Circuits

BIEE-033

5

7

7

7

7