No. of Printed Pages: 3

BIELE-012

B.Tech. – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

00953

December, 2016

BIELE-012 : ELECTRONIC SWITCHING CIRCUITS

Time : 3 hours

Maximum Marks: 70

Note: Attempt any seven questions. All questions carry equal marks. Assume missing data, if any. Use of scientific calculator is permitted.

- 1. Design a 3-bit up-down counter with a control input P such that when P = 1, it counts up and when P = 0, it counts down.
- 2. Analyze the synchronous circuit shown below :

BIELE-012

P.T.O.

10

- (a) Write down the excitation and output functions.
- (b) Form the excitation table and state table. 10
- 3. Design a modulo-8 counter which counts in the way given below. Use JK flip-flops in your realization.

Decimal	Gray code (count sequence)
0	000
1	001
2	011
3	010
4	110
5	111
6	101
7	100

- 4. The output z of a fundamental-mode two-input sequential circuit is to change from 0 to 1 only when x_2 changes from 0 to 1, while $x_1 = 1$. The output is to change from 1 to 0 only when x_1 changes from 1 to 0, while $x_2 = 1$.
 - (a) Find a minimum row reduced flow table.
 - (b) Write a set of hazard-free excitation and output equations.

BIELE-012

2

10

10

- 5. A sequential circuit has two pulse inputs x_1 and x_2 . The output of the circuit becomes '1' when one or more consecutive x_1 pulses are followed by two x_2 pulses. The output then remains '1' for all subsequent x_2 pulses until all x pulses occur.
 - (a) Derive a minimal state table.
 - (b) Synthesize the circuit using set-reset flip-flops.
- Explain the design of hazard-free combinational circuit and the design of hazard-free asynchronous circuit.
- 7. What are the different types of hazards ? Explain how these can be avoided.
- 8. Explain the synthesis of symmetric functions with the help of a suitable example. 10
- 9. Write short notes on any *two* of the following: 2×5=10
 - (a) Generation of Spikes
 - (b) Relay Contents
 - (c) Conversion of Mealy Circuit to Moore Circuit

BIELE-012

3

1,000

10

10