B．Tech．－VIEP－ELECTRONICS AND COMMUNICATION ENGINEERING （BTECVI）

Term－End Examination

ロロロ93
December， 2016

BIELE－011 ：DIGITAL SYSTEM DESIGN

Time ： 3 hours
Maximum Marks ： 70
Note：Attempt any seven questions．All questions carry equal marks．Use of scientific calculator is allowed．

1．Draw the logic diagram of a 4 －bit look ahead carry adder and calculate the speed－up compared to a 4－bit binary ripple adder．

2．Reduce the state diagram shown in Figure 1 and also write the reduced state table．Consider the input sequence as＂ 01010110100 ＂starting from the initial condition＇ 0 ＇．

Figure 1
3. Design the controller whose state diagram is shown in Figure 2. Write the RTL model of the controller.

Figure 2
4. Implement the Boolean function

$$
\begin{aligned}
& \mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,2,5,7,11,14) \text { and } \\
& \mathrm{P}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Pi \mathrm{M}(1,4,5,7,9,12,15)
\end{aligned}
$$

with multiplexer. 10
5. Write the working principle of ROM matrix for implementing a truth table of a full subtractor.
6. (a) Differentiate between Synchronous state machine and Asynchronous state machine.
(b) Design a Mod-6 up counter using J-K flip-flop.
7. Explain the types of operators in VHDL design. Write a program for a 4-bit binary to BCD conversion using data flow model. 10
8. Draw a multilevel NOR and multilevel NAND gate circuit to implement the Boolean function $F(A, B, C, D, E)=(A \bar{B}+C \bar{D}) E+B \bar{C}(A+B)$.
9. Write the data flow description for a 4-bit comparator. The output of the comparator is ' 1 ' when both the inputs are unequal and is ' 0 ' for equal input.
10. Design a logic circuit that controls an elevator in a four-storied building. The circuit has two inputs for user to indicate the desired floor to reach. The lift starts moving when start input $=1 . \mathrm{M}$ is an output signal that indicates if the desired floor is reached (i.e., $M=1$) and stops the lift for opening of gate. ' M ' remains in low state (i.e., '0'), when the lift is moving. F_{1} and F_{2} are two outputs to show the floor level that the lift has reached.

