No. of Printed Pages: 3

BIELE-006

P.T.O.

DIPLOMA - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (DECVI)

Term-End Examination

December, 2016

00473

BIELE-006

BIELE-006 : ELECTRONIC PRODUCT DESIGN

Ti	me : 2	2 hours Maximum Marks:	Maximum Marks: 70	
No	te:	Attempt any five questions. Each question carr equal marks. Use of scientific calculator permitted.		
1.	(a)	Explain thermal considerations in linear regulated power supply. Write down the various applications and advantages of linear regulated power supply.	7	
	(b)	Describe the functions of various protection circuits like EMI filter, fuses and MCB in power supply.	7	
2.	(a)	Define power dissipation and efficiency for the linear regulated power supply.	7	
÷	(b)	Design an FSM to detect a sequence 10110.	7	

3.	(a)	Draw the circuit diagram of a unity gain Sallen-Key High Pass (HP) filter with its transfer function.	7
	(b)	Compare Butterworth and Chebyshev filters with their transfer functions and frequency response.	7
4.	(a)	With the help of an example, differentiate Mealy and Moore machines.	7
	(b)	Explain DAC with pulse width modulation for analog output.	7
5.	(a)	Explain the working of a vending machine with the help of ASM technique.	7
	(b)	Design a second order Butterworth Band Pass (BP) active filter for a lower cut-off frequency of 1 kHz and a higher cut-off frequency of 2 kHz.	.7
6.	(a)	Explain KRC filter realization techniques.	7
	(b)	Draw and explain the output interfacing of Relay with microcontroller based Data Acquisition System.	7
7.	(a)	Explain how transducers are selected in Data Acquisition System.	7
	(b)	Describe the working of front-end analog signal conditioning circuit for microcontroller.	7

2

BIELE-006

- 8. Write short notes on any **two** of the following: $2\times7=14$
 - (a) Fuse Map Generation
 - (b) Indicators for Over Voltage and Over Current
 - (c) P-Spice