No. of Printed Pages: 4

BIEL-030

DIPLOMA - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (DECVI) / ADVANCED LEVEL CERTIFICATE COURSE IN ELECTRONICS AND COMMUNICATION ENGINEERING (ACECVI)

00663

Term-End Examination

December, 2016

BIEL-030 : DIGITAL ELECTRONICS

Time: 2 hours

Maximum Marks: 70

Note: Attempt any five questions. Question no. 1 is compulsory. Use of scientific calculator is allowed.

- 1. Choose the best answer for the following: $7 \times 2 = 14$
 - (a) Convert the decimal number 221 to binary number:
 - (i) 10111011
 - (ii) 11011101
 - (iii) 10111101
 - (iv) 10111100

(b)	Assign the proper odd parity bit to the code		
	111001.		
	(i) 1111011		
	(ii) 1111001		
	(iii) 0111111		
	(iv) 0011111		
()	VIII. 1. C. 1. C.		
(c)	Which of the following logic families has the shortest propagation delay?		
	(i) CMOS		
	(ii) BiCMOS		
	(iii) ECL		
	(iv) TTL		
(d)	What is the another name for a one-shot?		
	(i) Monostable		
	(ii) Bistable		
	(iii) Astable		
	(iv) Multivibrator		
(e)	The output of an OR gate with three		
(e)	inputs, A, B and C is low, when		
	(i) $A = 0, B = 0, C = 0$		
	(ii) $A = 0, B = 0, C = 1$		
	(iii) $A = 0, B = 1, C = 1$		
	(iv) Nove of the change		

(i)	1		
(ii)	4		
(iii)	6		
(iv)	8		
A he	exadecimal system has		
(i)	4 bits		
(ii)	8 bits		
(iii)	8 bytes		
(iv)	None of the above		
ain tl igurat	ne operation of open collector output ion.	14	
explain its operation.			
lemen	t the expression		
Y(A	$, B, C) = \Pi M(0, 2, 4, 5, 6)$		
using only NOR-NOR logic.			
_	-	10	
	<u> </u>	4	
	MOI (i) (ii) (iv) A he (i) (iii) (iv) at is r ain thigurate ign a ain its lemen Y(A g only Expl adde Drav	 (ii) 4 (iii) 6 (iv) 8 A hexadecimal system has (i) 4 bits (ii) 8 bits (iii) 8 bytes (iv) None of the above at is meant by TTL? With a neat diagram, ain the operation of open collector output figuration. ign a JK flip-flop using NOR gates and ain its operation. lement the expression Y(A, B, C) = Π M(0, 2, 4, 5, 6) 	

2.

3.

4.

5.

- 6. (a) Given the two binary numbers X = 1010100 and Y = 1000011. Perform the subtraction X Y using 1's complement method.
 - (b) Bring out the differences between
 (i) encoder and multiplexer, and
 (ii) combination and sequential logic
 circuits.
- 7. Write short notes on any **two** of the following: $2\times7=14$
 - (a) Realization of PMOS Inverter
 - (b) Shift Register
 - (c) De Morgan's Theorems

1,000