No. of Printed Pages: 4

BIEL-029

DIPLOMA - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (DECVI) / ADVANCED LEVEL CERTIFICATE COURSE IN ELECTRONICS AND COMMUNICATION ENGINEERING (ACECVI)

Term-End Examination

00943

December, 2016

BIEL-029 : ELECTRONIC MEASUREMENT AND INSTRUMENTS

Time: 2 hours

Maximum Marks: 70

Note: Attempt any five questions. Question no. 1 is compulsory. All questions carry equal marks. Missing data, if any, may be assumed.

- 1. Objective Type Questions (Fill in the blanks/Choose the best option/State true or false): 7×2=14
 - (a) A vertical amplifier for a CRO can be designed for
 - (i) High Gain
 - (ii) Broad Bandwidth
 - (iii) Gain-Bandwidth Product
 - (iv) All of the above

(b)	An aquadag is used in a CRO to collect secondary emission electrons. [True/False]
(c)	ISWR stands for
(d)	A 1 mA ammeter has a resistance of 100 Ω . It is to be converted to a 1 A ammeter. The value of shunt resistance is (i) 0.001 Ω (ii) 0.1001 Ω (iii) $10^5 \Omega$ (iv) 100 Ω
(e)	The power consumption of a PMMC instrument is typically about 0.25 mW to 2 mW. [True/False]
(f)	In measurement systems, undesirable static characteristics are (i) Sensitivity and Accuracy (ii) Drift, Static Error and Dead Zone (iii) Reproducibility and Non-linearity (iv) Drift, Static Error, Dead Zone and Non-linearity
(g)	Fast Response and Fidelity are the desirable dynamic characteristics of a measurement system. [True/False]

- 2. (a) Explain the following types of errors:
 - (i) Gross Errors
 - (ii) Systematic Errors
 - (iii) Random Errors

Give an example of each type of error.

7

- (b) What is the difference between accuracy and precision? List four possible sources of errors in instruments. 3+4=7
- 3. Explain the operation of a series type ohmmeter, with the help of a neatly labelled circuit diagram. Also prove that the values of resistances R_1 and R_2 are respectively given as

$$R_1 = R_h - \frac{I_{fSD} R_m R_h}{E} \text{ and } R_2 = \frac{I_{fSD} R_m R_h}{E - I_{fSD} R_h}$$

where:

R_b - Half scale position resistance

Lest - Full scale current

R_m - Internal resistance of movement

E - Battery voltage

7+7=14

- 4. (a) Give the block diagram of an integrating type Digital Voltmeter (DVM) and explain its operation as a voltage-to-frequency converter. Also prove that the output frequency is proportional to the input voltage.

 3+4=7
 - (b) Explain the operation of a Digital Multimeter (DMM) with the help of a neatly labelled block diagram.

5.	oscil desi	e the block diagram of a digital storage lloscope and explain its operation. List the rable features of a digital storage lloscope.	14
6.	(a)	Explain the operation of RF-type signal generators with the help of a neatly labelled block diagram.	7
	(b)	With the help of a neatly labelled block diagram, explain the operation of a Logic Analyzer.	7
7.		te technical notes on any two of the two swing:	=14
	(a)	Calibration of instruments	
	(b)	Analog Multimeters	

Use of CRO for frequency and phase

Function Generator and Pulse Generator

(c)

(d)

measurement