DIPLOMA - VIEP - COMPUTER SCIENCE AND ENGINEERING (DCSVI) / ADVANCED
 LEVEL CERTIFICATE COURSE IN COMPUTER SCIENCE AND ENGINEERING (ACCSVI)

Term-End Examination

OICS-001 : DATA STRUCTURES AND FILES

Time: 2 hours
Maximum Marks : 70
Note: Question no. 1 is compulsory. Attempt any four questions from the remaining.

1. Choose the correct answer.
(a) What is the index number of the last element of an array with 19 elements?
(i)
19
(ii) 18
(iii) 0
(iv) None of the above
(b) How many elements will be there in $\mathrm{A}[10][5]$?
(i) 50
(ii) 15
(iii) 10
(iv) 5
(c) Which of the following gives the value stored in pointer a?
(i) a ;
(ii) $\mathrm{val}(\mathrm{a})$;
(iii) ${ }^{*}$;
(iv) \&a;
(d) Which of the following is true to search an element from an unsorted array?
(i) Linear Search
(ii) Binary Search
(iii) Both (i) and (ii)
(iv) None of the above
(e) Quick sort is based on divide and conquer approach.
(i) True
(ii) False
(f) A stack follows FIFO.
(i) True
(ii) False
(g) The function \qquad is used to open a file.
(i) open()
(ii) file_open()
(iii) fopen()
(iv) file()
2. (a) Define array. Write an algorithm for matrix multiplication.
(b) What is a record ? How does a record differ from a file? Explain.
3. (a) What is the difference between function and recursive function ? Explain with example.
(b) Write a C program to pop an element from a stack.
4. (a) Sort the following elements using selection sort :

$$
22,44,33,55,11
$$

(b) Write a program to sort elements using bubble sort.

$$
7
$$

5. (a) What is Binary Search ? Write an algorithm for it and explain with a suitable example.

$$
7
$$

(b) Explain various Parameter Passing Techniques with the help of an example.
6. (a) Write an algorithm to evaluate a postfix expression.7
(b) Write a program to reverse a linked list. 7
7. (a) Write an application of the following :
(i) Depth first search
(ii) Breadth first search
(b) What is a Binary tree ? Explain binary tree traversal with a suitable example.
8. Write short notes on any four of the following :

$$
4 \times 3 \frac{1}{2}=14
$$

(a) Adjacency Matrix
(b) Priority Queue
(c) Circular Queue
(d) Hashing Function
(e) Circular Linked List

