DIPLOMA - VIEP - COMPUTER SCIENCE AND ENGINEERING (DCSVI)
 Term-End Examination
 ans53
 December, 2016

BICS-033 : NUMERICAL METHODS AND COMPUTATION

Time: 2 hours
Maximum Marks : 70

Note: Attempt any five questions. Question no. 1 is compulsory. All questions carry equal marks.

1. Choose the correct answer from the given four alternatives :
(a) Which of the following methods has the highest rate of convergence?
(i) Newton-Raphson Method
(ii) Secant Method
(iii) Regula-Falsi Method
(iv) None of the above
(b) In Bisection Method, if the function $f(x)$ has a root in the interval [a, b], then the polarity of $f(x)$ at point a and bi.e. $f(a)$ and $f(b)$ should be
(i) same
(ii) opposite
(iii) both positive only
(iv) both negative only
(c) Lagrange's interpolating polynomial $\mathbf{P}_{\mathbf{n}}(\mathbf{x})$ for number of nodal points (n) equal to one i.e. $P_{1}(x)$ is given by
(i) $l_{0} \mathrm{f}_{0}+l_{1} \mathrm{f}_{1}$
(ii) $l_{1} \mathrm{f}_{0}+l_{0} \mathrm{f}_{1}$
(iii) $\left(l_{1}-l_{0}\right)\left(\mathrm{f}_{1}-\mathrm{f}_{0}\right)$
(iv) All of the above
(d) The relation between finite difference operator (E) and averaging operator (μ) is
(i) $\frac{\mathrm{E}^{1 / 2}+\mathrm{E}^{-1 / 2}}{2}$
(ii) $\frac{\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}}{2}$
(iii) $\frac{\mathrm{E}^{1}+\mathrm{E}^{-1}}{2}$
(iv) None of the above
(e) $\int_{x_{0}}^{x_{n}} y d x=\frac{h}{2}\left[y_{0}+2\left(y_{1}+y_{2}+\ldots+y_{n-1}\right)+y_{n}\right]$
is the formula for numerical integration by
(i) Trapezoidal Rule
(ii) Simpson's $1 / 3$ rule
(iii) Simpson's $3 / 8$ rule
(iv) None of the above
(f) In divided difference table, if $\mathrm{n}^{\text {th }}$ order divided difference is found to be constant, then the degree of interpolating polynomial is
(i) n
(ii) $\mathrm{n}+1$
(iii) $\mathrm{n}-1$
(iv) None of the above
(g) The point through which the lines of regression i.e.

$$
y-\bar{y}=r \frac{\sigma_{y}}{\sigma_{x}}(x-\bar{x}) \text { and } x-\bar{x}=r \frac{\sigma_{x}}{\sigma_{y}}(y-\bar{y})
$$

pass, is given by
(i) (\bar{x}, \bar{y})
(ii) (\mathbf{x}, y)
(iii) $\left(\overline{\mathbf{x}}^{2}, \overline{\mathbf{y}}^{2}\right)$
(iv) None of the above
2. (a) Find the root of the equation $x^{3}-9 x+1=0$, correct to three significant figures using Bisection method. 7
(b) Use Newton-Raphson method to find the root of the equation $x^{3}-6 x+4=0$, correct to two decimal places.
3. (a) Solve the following system of equations, by using Gauss Elimination method :

$$
\begin{aligned}
& 2 x+2 y+4 z=18 \\
& x+3 y+2 z=13 \\
& 3 x+y+3 z=14
\end{aligned}
$$

(b) Solve the following system of equations, by the Gauss-Seidel method. Calculate the errors after $5^{\text {th }}$ iteration.

$$
\begin{aligned}
& x+y-z=0 \\
& -x+3 y=2 \\
& x-2 z=-3
\end{aligned}
$$

4. (a) Evaluate any two of the following:
(i) $\Delta^{2} e^{x}$
(ii) $\Delta \sin x$
(iii) $\Delta \log x$
(b) Find Lagrange's interpolating polynomial, for the discrete data given below :

$$
\begin{array}{rl}
i & =0 \\
x_{i} & =0 \\
\mathbf{x}_{i} & =1 \\
f_{i} & 3 \\
\hline
\end{array}
$$

5. (a) Develop Difference table and use Newton's formula, to find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=0$, where $y=f(x)$ is given by the following values :
$\begin{array}{llllll}\mathrm{x}: & 0.00 & 0.05 & 0.10 & 0.15 & 0.20\end{array}$
$\begin{array}{lllllll}y: & 0.00000 & 0.10017 & 0.20134 & 0.30452 & 0.41075\end{array}$
(b) Apply Trapezoidal rule to calculate $\int_{0}^{1} \frac{\mathrm{x}}{1+\mathrm{x}} \mathrm{dx}$, correct up to three significant
figures. Take six intervals.
6. (a) Use Euler's method to solve the equation $\frac{d y}{d x}=1-y$, given initial condition is $x=0$,

$$
y=0
$$

(b) Use Runge-Kutta method to approximate $\frac{d y}{d x}=x+y$, when $h=0.1$ and $y=1$ at $x=0 . \quad 7$
7. (a) Apply the method of Least Squares to find the polynomial of second degree, that fits in to the data given below :

| $\mathrm{x}:$ | 0 | 1.0 | 2.0 |
| :--- | :---: | :---: | :---: | :---: |
| $\mathrm{y}:$ | 1.0 | 6.0 | 17.0 |

(b) The following data is given for the marks in subjects A and B, in a certain examination :

	A	B
Mean Marks	36	85
Standard Deviation	11	8

Given the coefficient of correlation between A and $B= \pm 0.66$.

Perform the following tasks :
(i) Determine the two equations of regression.
(ii) Calculate the expected marks in A, corresponding to 75 marks obtained in B.
8. Explain any four of the following : $4 \times 3 \frac{1}{2}=14$
(a) Initial Value Problem
(b) Taylor Series Method for solving ODE (Ordinary Differential Equation)
(c) Linear Programming and its Application
(d) Types of Errors
(e) Brent's Method

