No. of Printed Pages: 7

BICS-033

DIPLOMA – VIEP – COMPUTER SCIENCE AND ENGINEERING (DCSVI)

Term-End Examination

00353

December, 2016

BICS-033 : NUMERICAL METHODS AND COMPUTATION

Time : 2 hours

Maximum Marks : 70

- Note: Attempt any five questions. Question no. 1 is compulsory. All questions carry equal marks.
- 1. Choose the correct answer from the given four alternatives : $7 \times 2 = 14$
 - (a) Which of the following methods has the highest rate of convergence ?
 - (i) Newton-Raphson Method
 - (ii) Secant Method
 - (iii) Regula-Falsi Method
 - (iv) None of the above

BICS-033

P.T.O.

- (b) In Bisection Method, if the function f(x) has a root in the interval [a, b], then the polarity of f(x) at point a and b i.e. f(a) and f(b) should be
 - (i) same
 - (ii) opposite
 - (iii) both positive only
 - (iv) both negative only
- (c) Lagrange's interpolating polynomial $P_n(x)$ for number of nodal points (n) equal to one i.e. $P_1(x)$ is given by
 - (i) $l_0 f_0 + l_1 f_1$

(ii)
$$l_1 f_0 + l_0 f_1$$

(iii)
$$(l_1 - l_0) (f_1 - f_0)$$

- (iv) All of the above
- (d) The relation between finite difference operator (E) and averaging operator (μ) is

(i)
$$\frac{E^{1/2} + E^{-1/2}}{2}$$

(ii)
$$\frac{E^{1/2} - E^{-1/2}}{2}$$

(iii)
$$\frac{E^{1} + E^{-1}}{2}$$

(iv) None of the above

BICS-033

2

(e) $\int_{x_0}^{n} y \, dx = \frac{h}{2} [y_0 + 2(y_1 + y_2 + ... + y_{n-1}) + y_n]$

is the formula for numerical integration by

- (i) Trapezoidal Rule
- (ii) Simpson's 1/3 rule
- (iii) Simpson's 3/8 rule
- (iv) None of the above
- (f) In divided difference table, if nth order divided difference is found to be constant, then the degree of interpolating polynomial is
 - (i) **n**
 - (ii) n+1
 - (iii) n 1
 - (iv) None of the above
- (g) The point through which the lines of regression i.e.

 $y - \overline{y} = r \frac{\sigma_y}{\sigma_x} (x - \overline{x}) \text{ and } x - \overline{x} = r \frac{\sigma_x}{\sigma_y} (y - \overline{y})$

pass, is given by

- (i) $(\overline{\mathbf{x}}, \overline{\mathbf{y}})$
- (ii) (x, y)
- (iii) $(\bar{\mathbf{x}}^2, \bar{\mathbf{y}}^2)$
- (iv) None of the above

BICS-033

P.T.O.

- 2. (a) Find the root of the equation $x^3 9x + 1 = 0$, correct to three significant figures using Bisection method.
 - (b) Use Newton-Raphson method to find the root of the equation $x^3 6x + 4 = 0$, correct to two decimal places.

7

7

7

7

3. (a) Solve the following system of equations, by using Gauss Elimination method :

2x + 2y + 4z = 18x + 3y + 2z = 133x + y + 3z = 14

(b) Solve the following system of equations, by the Gauss-Seidel method. Calculate the errors after 5th iteration.

$$x + y - z = 0$$
$$-x + 3y = 2$$
$$x - 2z = -3$$

4

(a) Evaluate any *two* of the following :

(i) $\Delta^2 e^x$

4.

- (ii) $\Delta \sin x$
- (iii) $\Delta \log x$

(b) Find Lagrange's interpolating polynomial, for the discrete data given below :

i	=	0	1	2
x _i	=	0	1	3
f _i	=	1	. 3	55

5. (a) Develop Difference table and use Newton's formula, to find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 0, where y = f(x) is given by the following values :

x :0.000.050.100.150.20y :0.000000.100170.201340.304520.41075

(b) Apply Trapezoidal rule to calculate $\int_{0}^{1} \frac{x}{1+x} dx$, correct up to three significant

figures. Take six intervals.

BICS-033

P.T.O.

7

7

7

7

- 6. (a) Use Euler's method to solve the equation $\frac{dy}{dx} = 1 - y$, given initial condition is x = 0, y = 0.
 - (b) Use Runge-Kutta method to approximate $\frac{dy}{dx} = x + y$, when h = 0.1 and y = 1 at x = 0. 7

7

7

7

 (a) Apply the method of Least Squares to find the polynomial of second degree, that fits in to the data given below :

 x
 :
 0
 $1 \cdot 0$ $2 \cdot 0$

 y
 :
 $1 \cdot 0$ $6 \cdot 0$ $17 \cdot 0$

(b) The following data is given for the marks in subjects A and B, in a certain examination :

	Α	В
Mean Marks	36	85
Standard Deviation	11	8

Given the coefficient of correlation between A and $B = \pm 0.66$.

Perform the following tasks :

- (i) Determine the two equations of regression.
- (ii) Calculate the expected marks in A, corresponding to 75 marks obtained in B.

BICS-033

8. Explain any *four* of the following :

- (a) Initial Value Problem
- (b) Taylor Series Method for solving ODE (Ordinary Differential Equation)
- (c) Linear Programming and its Application

7

- (d) Types of Errors
- (e) Brent's Method

BICS-033