No. of Printed Pages: 4

BICS-029

DIPLOMA - VIEP - COMPUTER SCIENCE AND ENGINEERING (DCSVI) / ADVANCED LEVEL CERTIFICATE COURSE IN COMPUTER SCIENCE AND ENGINEERING (ACCSVI)

00683

Term-End Examination

December, 2016

BICS-029: ALGORITHMS AND LOGIC DESIGN

Time: 2 hours

Maximum Marks: 70

Note: Attempt any five questions. Question number 1 is compulsory which has multiple choice questions.

Each question carries equal marks.

- 1. Choose the correct answer from the given four alternatives: $7\times2=14$
 - (a) The time factor when determining the efficiency of an algorithm is measured by
 - (i) counting microseconds
 - (ii) counting the number of key operations
 - (iii) counting the number of key statements
 - (iv) counting the kilobytes of an algorithm

(b)	The complexity of binary search algorithm i
	(i) O(n)
	(ii) O(log n)
	(iii) O(n ²)
	(iv) O(n log n)
(c)	The operation of processing each element in a list is known as
	(i) Sorting
	(ii) Merging
	(iii) Inserting
	(iv) Traversal
(d)	A data structure where elements can be added or removed at either end but not both is called a
	(i) Linked list
	(ii) Stack
	(iii) Queue
	(iv) Deque
(e)	The depth of a complete binary tree is
	(i) $D_n = n \log_2 n$
	(ii) $D_n = n \log_2 n + 1$
	(iii) $D_n = \log_2 n$

(iv) $D_n = \log_2 n + 1$

	(f)	The worst case occurs in linear search algorithm when the	
	•	(i) item is somewhere in the middle of the array	
		(ii) item is not in the array at all	
		(iii) item is the last element in the array	
		(iv) item is the last element in the array or is not there at all	
	(g)	What is the output of the compiler?	
		(i) Source code	
		(ii) Op-code	
		(iii) Object code	•
		(iv) Byte code	
2.	(a)	What are best case, average case and worst case performances? Explain.	7
	(b)	Compute the time complexity of recursive Fibonacci procedure, where $F(n) = F(n-1) + F(n-2).$	7
3.	(a)	Devise a version of merge sort algorithm which performs sorting in place.	7
	(b)	Suggest refinements to merge sort to make it in place.	7
4.	(a)	How does quicksort sort the following sequence of keys in ascending order?	7
		22, 55, 33, 11, 99, 77, 55, 66, 54, 21, 32.	
	(b)	Write the pseudocode for Shell sort.	7
BIC	S-029	3 P.T	.0.
		· ·	

5.	num man num N is	the an algorithm in pseudocode to count the ber of lower case letters in a file of text. How be y comparisons does it do? What is the least ber of increments it might do? Assume that the number of characters in a file. Determine me complexity using step-count method.	14
6.	(a)	Explain the performance analysis of an algorithm in detail.	7
	(b)	Write an algorithm for recursive binary search.	7
7.	(a)	Devise an algorithm which accepts a number in decimal and produces the equivalent number in binary.	7
	(b)	Explain clearly about space complexity.	7
8.	Write follow (a)	e short notes on any four of the wing: $4\times 3\frac{1}{2}=$ Bucket Sort	:14
	(b)	Randomized Algorithm	
	(c)	Validation of Algorithm	
	(d)	Recursion	
	(e)	Binary Search Tree	