# B.Tech. CIVIL ENGINEERING (BTCLEVI) 

# Term-End Examination 

DIDIES December, 2016

## BICEE-004 : STRUCTURAL OPTIMIZATION

Time: 3 hours<br>Maximum Marks : 70

Note: Answer any seven questions. All questions carry equal marks. Use of scientific calculator is permitted. Assume missing data suitably, if any.

1. (a) Briefly explain concave and convex functions of a single variable.
(b) Describe any four applications of structural optimization.
2. A manufacturing company is engaged in producing three types of products, A, B and C. The production department produces, each day, components sufficient to make 50 units of A, 25 units of $B$ and 30 units of $C$. The management is confronted with the problem of optimizing the daily production of the products in the assembly department, where only 100 man-hours are
available daily for assembling the products. The following additional information is available :

| Type of <br> products | Profit contribution per <br> unit of product (₹) | Assembly Time <br> per product <br> (hrs) |
| :---: | :---: | :---: |
| A | 12 | 0.8 |
| B | 20 | 1.7 |
| C | 45 | 2.5 |

The company has a daily order commitment for 20 units of product $A$ and a total of 15 units of products B and C. Formulate the problem as a linear programming model so as to maximize the total profits.
3. Solve the following non-linear programming problem :
Minimize

$$
f(x)=5 x_{1}^{1} x_{2}^{-1}+2 x_{1}^{-1} x_{2}^{1}+5 x_{1}^{1} x_{2}^{0}+x_{1}^{0} x_{2}^{-1}
$$

using the geometric programming method.
(Assume $\mathrm{n}>\mathrm{m}+1$ )
4. (a) Express the mathematical form of Quadratic programming problem.
(b) Write any two applications of Quadratic programming.
5. Determine $x_{1}$ and $x_{2}$ so as to

Maximize $\mathrm{z}=12 \mathrm{x}_{1}+21 \mathrm{x}_{2}+2 \mathrm{x}_{1} \mathrm{x}_{2}-2 \mathrm{x}_{1}^{2}-2 \mathrm{x}_{2}^{2}$
subject to the constraints

$$
\begin{align*}
& x_{1} \leq 8 \\
& x_{1}+x_{2} \leq 10 \\
& x_{1}, x_{2} \geq 0 . \tag{10}
\end{align*}
$$

6. A firm has a total revenue function $R=20 x-2 x^{2}$, and a total cost function $C=x^{2}-4 x+20$, where $x$ represents the quantity. Find the revenue maximizing output level and the corresponding value of profit, price and total revenue.
7. Find the second order Taylor's series approximation of the function

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=x_{1}^{2} \cdot x_{2}+5 x_{1} \cdot e^{x_{2}} \tag{10}
\end{equation*}
$$

about the point $\mathrm{x}_{0}=[-1,0]^{\mathrm{T}}$.
8. Use dynamic programming to solve the following linear programming problem :

Maximize $\mathrm{z}=3 \mathrm{x}_{1}+5 \mathrm{x}_{2}$
subject to the constraints

$$
\begin{aligned}
& x_{1} \leq 4 ; \\
& x_{2} \geq 6 ; \\
& 3 x_{1}+2 x_{2} \leq 18 \text { and } \\
& x_{1}, x_{2} \geq 0 .
\end{aligned}
$$

9. (a) What do you mean by slack and surplus variables in linear programming problem? $\quad 4$
(b) Obtain the dual of the following primal LP problem :

Maximize $\mathrm{z}=\mathrm{x}_{1}-2 \mathrm{x}_{2}+3 \mathrm{x}_{3}$
subject to

$$
\begin{aligned}
& -2 x_{1}+x_{2}+3 x_{3}=2 \\
& 2 x_{1}+3 x_{2}+4 x_{3}=1 \\
& x_{1}, x_{2}, x_{3} \geq 0 .
\end{aligned}
$$

10. (a) What do you mean by Genetic Algorithm? What are the building block hypotheses of genetic algorithm?
(b) Explain in brief, Crossover and Mutation genetic algorithm.
