No. of Printed Pages: 4

BICE-027

B.Tech. – VIEP – MECHANICAL ENGINEERING / B.Tech. CIVIL ENGINEERING (BTMEVI / BTCLEVI)

00493

Term-End Examination

December, 2016

BICE-027 : MATHEMATICS-III

Time : 3 hours

Maximum Marks : 70

Note : Attempt any **ten** questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. Expand

 $f(x) = x \sin x, 0 < x < 2\pi$

as a Fourier series.

2. Find the Fourier series for the function

 $f(x) = x + x^2$ in the interval $-\pi < x < \pi$.

Hence show that

$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}.$$

BICE-027

P.T.O.

7

7

3. Find the Fourier expansion for the function

$$f(x) = x - x^2, -1 < x < 1.$$

4. If f(x) = x, $0 < x < \frac{\pi}{2}$ = $\pi - x$, $\frac{\pi}{2} < x < \pi$,

show that

$$f(x) = \frac{4}{\pi} \left(\sin x - \frac{\sin 3x}{3^2} + \frac{\sin 5x}{5^2} - \dots \right).$$

7

7

7

7

7

7

5. Analyse harmonically the data given below and express y in Fourier series up to the third harmonic:

x	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$	2π
у	1.0	1.4	1.9	1.7	1.5	1.2	1.0

6. Solve:

 $\cos(x+y) dy = dx$

7. Solve :

 $\frac{\mathrm{d}y}{\mathrm{d}x} + y \cot x = \cos x$

8. Solve :

$$\tan y \frac{dy}{dx} + \tan x = \cos y \cos^2 x$$

BICE-027

9. Solve :

$$(\mathbf{x}^2 - \mathbf{y}\mathbf{z}) \mathbf{p} + (\mathbf{y}^2 - \mathbf{z}\mathbf{x}) \mathbf{q} = \mathbf{z}^2 - \mathbf{x}\mathbf{y}$$

10. Using the method of separation of variables,

solve

$$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = 2\frac{\partial \mathbf{u}}{\partial \mathbf{t}} + \mathbf{u},$$

where $u(x, 0) = 6e^{-3x}$.

11. Find the solution of the wave equation

$$\frac{\partial^2 \mathbf{y}}{\partial \mathbf{t}^2} = \mathbf{c}^2 \; \frac{\partial^2 \mathbf{y}}{\partial \mathbf{x}^2}$$

such that

 $y = P_0 \cos pt$,

 P_0 is a constant when x = 1, and y = 0 when x = 0. 7

12. A string is stretched and fastened to two points l apart. Motion is started by displacing the string into the form

$$\mathbf{y} = \mathbf{k}(l\mathbf{x} - \mathbf{x}^2)$$

from which it is released at time t = 0. Find the displacement of any point on the string at a distance of x from one end at time t.

BICE-027

P.T.O.

7

7

13. Find the solution of

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} = \mathbf{h}^2 \frac{\partial \mathbf{u}}{\partial \mathbf{t}}$$

for which u(0, t) = u(l, t) = 0,

$$u(x, 0) = \sin \frac{\pi x}{l}$$

by the method of variables separable.

14. Solve

$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$$
, given that

(a)
$$u = 0$$
, when $x = 0$ and $x = l$ for all l

(b)
$$u = 3 \sin \frac{\pi x}{l}$$
, when $t = 0$ for all x, $0 < x < l$. 7

15. Find by the method of separation of variables the solution of U(x, t) of the boundary value problem

$$\begin{aligned} &\frac{\partial U}{\partial t} = 3 \frac{\partial^2 U}{\partial x^2}, & t > 0, \ 0 < x < 2 \\ &U(0, t) = 0, & U(2, t) = 0 \\ &U(x, 0) = x, & 0 < x < 2. \end{aligned}$$

BICE-027

1,000

7

7