No. of Printed Pages : 4
BICE-027

B.Tech. - VIEP - MECHANICAL ENGINEERING / B.Tech. CIVIL ENGINEERING (BTMEVI / BTCLEVI)

EII1493

Term-End Examination
December, 2016

BICE-027 : MATHEMATICS-III

Time: 3 hours
Maximum Marks : 70
Note: Attempt any ten questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. Expand

$$
f(x)=x \sin x, 0<x<2 \pi
$$

as a Fourier series.
2. Find the Fourier series for the function

$$
\mathrm{f}(\mathrm{x})=\mathrm{x}+\mathrm{x}^{2} \text { in the interval }-\pi<\mathrm{x}<\pi .
$$

Hence show that

$$
\begin{equation*}
\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots=\frac{\pi^{2}}{12} \tag{7}
\end{equation*}
$$

3. Find the Fourier expansion for the function

$$
\begin{equation*}
f(x)=x-x^{2},-1<x<1 \tag{7}
\end{equation*}
$$

4. If $f(x)=x, 0<x<\frac{\pi}{2}$

$$
=\pi-\mathrm{x}, \frac{\pi}{2}<\mathrm{x}<\pi,
$$

show that

$$
\begin{equation*}
f(x)=\frac{4}{\pi}\left(\sin x-\frac{\sin 3 x}{3^{2}}+\frac{\sin 5 x}{5^{2}}-\ldots\right) \tag{7}
\end{equation*}
$$

5. Analyse harmonically the data given below and express y in Fourier series up to the third harmonic :

x	0	$\frac{\pi}{3}$	$\frac{2 \pi}{3}$	π	$\frac{4 \pi}{3}$	$\frac{5 \pi}{3}$	2π
y	1.0	1.4	1.9	1.7	1.5	1.2	1.0

6. Solve :

$$
\cos (x+y) d y=d x
$$

7. Solve :

$$
\frac{d y}{d x}+y \cot x=\cos x
$$

8. Solve :

$$
\tan y \frac{d y}{d x}+\tan x=\cos y \cos ^{2} x
$$

9. Solve :

$$
\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=z^{2}-x y
$$

10. Using the method of separation of variables, solve

$$
\begin{equation*}
\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u \tag{7}
\end{equation*}
$$

where $u(x, 0)=6 e^{-3 x}$.
11. Find the solution of the wave equation

$$
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}
$$

such that

$$
y=P_{0} \cos p t
$$

P_{0} is a constant when $x=1$, and $y=0$ when $x=0$.
12. A string is stretched and fastened to two points l apart. Motion is started by displacing the string into the form

$$
y=k\left(l x-x^{2}\right)
$$

from which it is released at time $t=0$. Find the displacement of any point on the string at a distance of x from one end at time t.
13. Find the solution of

$$
\frac{\partial^{2} \mathbf{u}}{\partial \mathbf{x}^{2}}=h^{2} \frac{\partial u}{\partial t}
$$

for which $u(0, t)=u(l, t)=0$,

$$
\mathrm{u}(\mathrm{x}, 0)=\sin \frac{\pi \mathrm{x}}{l}
$$

by the method of variables separable.
14. Solve

$$
\frac{\partial u}{\partial t}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}, \text { given that }
$$

(a) $\mathrm{u}=0$, when $\mathrm{x}=0$ and $\mathrm{x}=l$ for all l
(b) $\mathrm{u}=3 \sin \frac{\pi \mathrm{x}}{l}$, when $\mathrm{t}=0$ for all $\mathrm{x}, 0<\mathrm{x}<l$.
15. Find by the method of separation of variables the solution of $U(x, t)$ of the boundary value problem

$$
\frac{\partial U}{\partial t}=3 \frac{\partial^{2} U}{\partial x^{2}}, \quad t>0,0<x<2
$$

$$
\begin{array}{lr}
\mathrm{U}(0, \mathrm{t})=0, & \mathrm{U}(2, \mathrm{t})=0 \\
\mathrm{U}(\mathrm{x}, 0)=\mathrm{x}, & 0<\mathrm{x}<2 .
\end{array}
$$

