DIPLOMA IN CIVIL ENGINEERING (DCLE(G)) / DIPLOMA IN MECHANICAL ENGINEERING (DME) / DCLEVI / DMEVI / DELVI / DECVI /
 DCSVI/ ACCLEVI / ACMEVI / ACELVI / ACECVI / ACCSVI

Term-End Examination
December, 2016

BET-021 : MATHEMATICS - II

Time: 2 hours
Maximum Marks : 70
Note: Question no. 1 is compulsory. Attempt any four questions out of the remaining questions no. 2 to 7. Use of calculator is permitted.

1. (A) Select the correct answer from the four alternatives.
$7 \times 1=7$
(i) $\lim _{x \rightarrow 0} \frac{x^{3}+2 x^{2}+x}{x^{2}+2 x}$ is equal to
(a) $\frac{1}{2}$
(b) 0
(c) 2
(d) 1
(ii) If $x=a \cos t, y=a \sin t(0 \leq t \leq \pi)$, then the value of $\frac{d y}{d x}$ at $t=\frac{\pi}{4}$ is
(a) 1
(b) -1
(c) 0
(d) ∞
(iii) $\int x^{-1} d x$ is equal to
(a) $\log x+c$
(b) $e^{x}+c$
(c) $\frac{x^{-2}}{2}+c$
(d) None of these
(iv) $\int_{-2}^{2} x^{3} d x$ is equal to
(a) 4
(b) - 4
(c) 0
(d) 8
(v) If $a+i b=\frac{(1+i)(2+i)}{3+i}$, then
(a) $\mathrm{a}=\frac{4}{5}, \mathrm{~b}=\frac{3}{5}$
(b) $\mathrm{a}=\frac{4}{5}, \mathrm{~b}=\frac{-3}{5}$
(c) $\mathrm{a}=\frac{-4}{5}, \mathrm{~b}=\frac{3}{5}$
(d) $\mathrm{a}=\frac{3}{5}, \mathrm{~b}=\frac{4}{5}$
(vi) If A and B are square matrices of the same order, then
$\operatorname{det} \mathbf{A B}=\operatorname{det} \mathbf{A} . \operatorname{det} \mathbf{B}$.
(a) False
(b) True
(c) Sometimes True
(d) None of these
(vii) According to De Moivre's theorem,
$(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$ is true
(a) if \mathbf{n} is a positive integer
(b) if n is a negative integer
(c) if n is an integer
(d) if n depends upon the value of θ
(B) Fill in the blanks :
(i) Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{2 \times 2}$ and $\mathrm{a}_{\mathrm{ij}}=\mathrm{i}+\mathrm{j}$, then A^{2} is equal to \qquad .
(ii) $\lim _{x \rightarrow 0} \frac{x^{n}-a^{n}}{x-a}$ is equal to \qquad .
(iii) If $(1+i)=r(\cos \theta+i \sin \theta)$, then r is
\qquad and θ is \qquad .
(iv) $\int \log x d x=$ \qquad .
(v) A particle moves along a straight line according to the formula $s=12 t-3 t^{2}$, where s is in meter and t is in seconds. Its acceleration is \qquad .
(vi) The central value of a set of observations is called \qquad .
(vii) Points of maxima and minima for the function
$f(x)=x^{5}-5 x^{4}+5 x^{3}-1$ are \qquad .
2. (a) Differentiate $(\sin x)^{\cos x}$ with respect to x.
(b) Find the angle between the curves

$$
f(x)=4-x^{2} \text { and } g(x)=x^{2} .
$$

3. (a) Evaluate :

$$
\int x \tan ^{-1} x d x
$$

(b) Evaluate :

$$
\int_{0}^{1} \frac{x d x}{\sqrt{1+x^{2}}}
$$

4. (a) If z_{1} and z_{2} are two complex numbers, then show that $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$.
(b) Find the different values of $(1+i)^{1 / 3}$. $7+7$
5. (a) Check the continuity of the following function at $x=0$:

$$
f(x)=\left\{\begin{array}{lll}
2 x-1, & \text { if } & x<0 \\
2 x+1, & \text { if } & x \geq 0
\end{array}\right.
$$

(b) Show that the matrix $A=\left[\begin{array}{ccc}4 & -6 & 1 \\ -1 & -1 & 1 \\ 4 & 11 & -1\end{array}\right]$ is invertible. Find $\operatorname{adj}(A)$ and A^{-1}.
6. (a) Calculate the mean and median of the following data using step deviation method :

Number of workers	Wages per week up to (₹)
12	15
30	30
65	45
107	60
157	75
202	90
222	105
230	120

(b) Find the standard deviation of the following data:
$38,70,48,34,42,55,63,46,54,44$
$7+7$
7. (a) Evaluate $\int_{0}^{\pi / 2} \frac{\sin x}{\sin x+\cos x} d x$.
(b) If A and B are invertible square matrices of the same order, then show that $A B$ is also invertible and $(A B)^{-1}=B^{-1} A^{-1}$. $7+7$

