No. of Printed Pages: 6

BET-021

DIPLOMA IN CIVIL ENGINEERING (DCLE(G)) / DIPLOMA IN MECHANICAL ENGINEERING (DME) / DCLEVI / DMEVI / DELVI / DECVI / DCSVI/ ACCLEVI / ACMEVI / ACELVI / ACECVI / ACCSVI 10542 **Term-End Examination**

December, 2016

BET-021 : MATHEMATICS - II

Time : 2 hours

Maximum Marks : 70

- Note: Question no. 1 is compulsory. Attempt any four questions out of the remaining questions no. 2 to 7. Use of calculator is permitted.
- 1. (A) Select the correct answer from the four alternatives. $7 \times 1 = 7$
 - x^{3} +2 x^{2} + x is equal to lim **(i)** $\mathbf{x} \rightarrow \mathbf{0}$ **(a)** (b) 0 (c) 2 (**d**)

BET-021

P.T.O.

1

(ii) If x = a cos t, y = a sin t ($0 \le t \le \pi$), then the value of $\frac{dy}{dx}$ at t = $\frac{\pi}{4}$ is

> (a) 1(b) -1(c) 0(d) ∞

(iii)
$$\int x^{-1} dx$$
 is equal to
(a) $\log x + c$
(b) $e^x + c$
(c) $\frac{x^{-2}}{2} + c$

(d) None of these

(iv)
$$\int_{-2}^{2} x^{3} dx$$
 is equal to
(a) 4
(b) -4
(c) 0
(d) 8

BET-021

2

(v) If
$$a + ib = \frac{(1+i)(2+i)}{3+i}$$
, then

(a)
$$a = \frac{4}{5}, b = \frac{3}{5}$$

(b) $a = \frac{4}{5}, b = \frac{-3}{5}$
(c) $a = \frac{-4}{5}, b = \frac{3}{5}$
(d) $a = \frac{3}{5}, b = \frac{4}{5}$

(vi) If A and B are square matrices of the same order, then

 $\det AB = \det A \cdot \det B$.

- (a) False
- (b) True
- (c) Sometimes True
- (d) None of these
- (vii) According to De Moivre's theorem,

 $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$ is true

- (a) if n is a positive integer
- (b) if n is a negative integer
- (c) if n is an integer
- (d) if n depends upon the value of θ

BET-021

P.T.O.

(B) Fill in the blanks :

(i) Let A = $[a_{ij}]_{2\times 2}$ and $a_{ij} = i + j$, then A² is equal to ______.

(ii)
$$\lim_{x\to 0} \frac{x^n - a^n}{x - a}$$
 is equal to _____.

(iii) If $(1 + i) = r (\cos \theta + i \sin \theta)$, then r is _____ and θ is _____.

(iv) $\int \log x \, dx =$ _____.

- (v) A particle moves along a straight line according to the formula $s = 12t - 3t^2$, where s is in meter and t is in seconds. Its acceleration is _____.
- (vi) The central value of a set of observations is called ______.
- (vii) Points of maxima and minima for the function $f(x) = x^5 - 5x^4 + 5x^3 - 1$ are

2. (a) Differentiate $(\sin x)^{\cos x}$ with respect to x.

(b) Find the angle between the curves $f(x) = 4 - x^2$ and $g(x) = x^2$.

BET-021

7×1=7

7+7

3. (a) Evaluate :

$$\int x \tan^{-1} x \, dx$$

(b) Evaluate :

$$\int_{0}^{1} \frac{x \, dx}{\sqrt{1+x^2}}$$

4. (a) If z_1 and z_2 are two complex numbers, then show that $|z_1 + z_2| \le |z_1| + |z_2|$.

- (b) Find the different values of $(1 + i)^{1/3}$.
- 5. (a) Check the continuity of the following function at x = 0:

$$\mathbf{f}(\mathbf{x}) = \begin{cases} 2\mathbf{x} - \mathbf{1}, & \text{if } \mathbf{x} < \mathbf{0} \\ \\ 2\mathbf{x} + \mathbf{1}, & \text{if } \mathbf{x} \ge \mathbf{0} \end{cases}$$

(b) Show that the matrix $A = \begin{bmatrix} 4 & -6 & 1 \\ -1 & -1 & 1 \\ 4 & 11 & -1 \end{bmatrix}$ is invertible. Find adj(A) and A^{-1} . 7+7

BET-021

7+7

7+7

6. (a) Calculate the mean and median of the following data using step deviation method:

Number of workers	Wages per week up to (₹)
12	15
30	30
65	45
107	60
157	75
202	90
222	. 105
230	120

(b) Find the standard deviation of the following data:

38, 70, 48, 34, 42, 55, 63, 46, 54, 44 7+7

7. (a) Evaluate
$$\int_{0}^{\pi/2} \frac{\sin x}{\sin x + \cos x} \, dx \, .$$

(b) If A and B are invertible square matrices of the same order, then show that AB is also invertible and $(AB)^{-1} = B^{-1} A^{-1}$. 7+7