No. of Printed Pages: 7

BCE-032(S)

DIPLOMA IN CIVIL ENGINEERING DCLE (G) / ADVANCED LEVEL CERTIFICATE COURSE IN CIVIL ENGINEERING (DCLEVI/ACCLEVI)

Term-End Examination

00138

December, 2016

BCE-032(S) : THEORY OF STRUCTURES - I

Time : 2 hours

Maximum Marks : 70

P.T.O.

- Note: Question number 1 is compulsory. Attempt any four questions from the remaining. In total, five questions are to be attempted. Assume suitable data wherever necessary. Use of calculator is permitted.
- 1. Choose the most appropriate answer from the given alternatives in each case : $7 \times 2=14$
 - (a) If the nominal diameter of a rivet is
 27 mm, then the gross diameter of the rivet hole will be
 - (i) 27 mm
 - (ii) 28.5 mm
 - (iii) **25 mm**
 - (iv) 29 mm

BCE-032(S)

- (b) The slope and deflection at various points in a beam subjected to bending moment are
 - (i) independent functions
 - (ii) directly proportional to bending moment
 - (iii) interdependent functions
 - (iv) None of the above
- (c) The maximum permissible eccentricity of load for no tension at the base of a masonry wall having a base width 'B' is

(i)	$\frac{B}{6}$
(ii)	$\frac{\mathbf{B}}{3}$
(iii)	$\frac{B}{4}$
(i v)	$\frac{B}{2}$

(d) The strength of a riveted joint is equal to the

- (i) shearing strength of the rivets
- (ii) bearing strength of the rivets
- (iii) tearing strength of plate
- (iv) Least of (i), (ii) and (iii)

BCE-032(S)

(e)

The pitch of a roof truss is given by

(i) $\frac{\text{Rise}}{\text{Span}}$

(ii) $\frac{\text{Span}}{\text{Rise}}$

(iii) $\frac{2 \times \text{Rise}}{\text{Span}}$

(iv)
$$\frac{\text{Rise}}{2 \times \text{Span}}$$

- (f) When two plates are placed end to end and are joined using a cover plate on one side, the joint is known as
 - (i) Lap joint
 - (ii) Flap joint
 - (iii) Single cover butt joint
 - (iv) Double cover butt joint
- (g) The maximum bending moment in a purlin of a roof truss may be taken as
 - (i) $\frac{WL}{12}$
(ii) $\frac{WL}{10}$
(iii) $\frac{WL}{8}$
(iv) $\frac{WL}{6}$

BCE-032(S)

P.T.O.

2. Draw the influence line diagram for bending moment at point P of the simply supported beam AB as shown in Figure 1. Using this diagram, find the maximum bending moment at P due to two connected wheel loads of 10 kN each, 3 m apart and moving from A to B.

14

6

8

Figure 1

3. (a) State the two Moment-Area theorems.

(b) A fixed beam AB of span 10 m carries a point load of 10 kN at 3 m from the end B. Using Moment-Area theorem, analyse the beam and draw the shear force and bending moment diagrams.

BCE-032(S)

4. Using moment distribution method, analyse the portal frame shown in Figure 2 and draw the bending moment diagram. The moments of inertia are shown within circles.

Figure 2

- 5. (a) Describe the assumptions made in the design of riveted joints.
 - (b) Design a riveted connection for an angle ISA $60 \times 40 \times 6$, connected by the longer leg to a gusset plate 6 mm thick using 16 mm dia power-driven shop rivets and carrying a tensile force of 45 kN. Maximum permissible stresses in the power-driven shop rivets are :

Shear $(\tau_{vf}) = 100 \text{ MPa}$

Bearing on rivet $(\sigma_{pt}) = 300 \text{ MPa}$

BCE-032(S)

P.T.O.

6

8

14

6. A column is made up of an ISHB 350 @ 72.4 kg/m with two flange plates 400×10 mm section each, as shown in Figure 3. Find the total load carrying capacity of the column, if the effective length of the column is 4.5 m. Take $f_v = 250$ MPa.

14

Figure 3

Properties of ISHB 350:

A =
$$92 \cdot 21 \text{ cm}^2$$

 $I_{xx} = 19802 \cdot 8 \text{ cm}^4$
 $I_{yy} = 2510 \cdot 5 \text{ cm}^4$

For $f_y = 250$ MPa :

λ	40	50	60
σ_{ac} (MPa)	139	132	122

BCE-032(S)

- 7. (a) Describe the two stability criteria of retaining walls.
 - (b) Describe different types of loads that are considered for the design of a roof truss.

BCE-032(S)

500

7