BACHELOR OF ARCHITECTURE (B.Arch.)

Term-End Examination

पII45. December, 2016

BAR-044 : THEORY OF STRUCTURES - V

Time: 3 hours
Maximum Marks : 70
Note: Attempt any four questions. Use of scientific calculator and IS : 456 code is permitted. Assume any data, if missing, suitably.

1. (a) What do you understand by 'Composite sections'? Give any two examples and write the advantages of use of such sections.
(b) A simply supported RC beam, 300 mm wide and 500 mm effective depth, carries a uniformly distributed load of $50 \mathrm{kN} / \mathrm{m}$ including its own weight over its effective span of 4 m . Design the shear reinforcement in the form of vertical stirrups. Use M 20 grade concrete and Fe 415 grade steel. Use working stress method of design. Assume that the beam contains 1.0% reinforcement throughout its length.
2. (a) Discuss why over-reinforced RC beam sections are to be avoided. What should be the remedy?
(b) Determine the moment of resistance of a singly reinforced RC beam, 160 mm wide and 300 mm deep to the centre of reinforcement. The reinforcement consists of 4 bars of 16 mm diameter. Use M 20 grade concrete and Fe 415 grade steel.
3. (a) Compare the load transfer mechanism in one-way and two-way slabs. Provide neat sketches showing load transfer in both cases, if a concentrated load is applied at the centre of the slabs.
(b) A reinforced concrete column, 4 m effective length and 400 mm in diameter, is reinforced with 8 bars of 20 mm diameter. Find the safe load for the column. The column is provided with lateral ties. Use M 25 grade concrete and Fe 415 grade steel. $12 \frac{1}{2}$
4. (a) Discuss why shear reinforcement is usually not required in slabs of residential buildings unlike in RC beams.
(b) Design an isolated footing of uniform thickness for a reinforced concrete column bearing an axial load of 600 kN . The size of the column is $300 \mathrm{~mm} \times 300 \mathrm{~mm}$. The safe bearing capacity of soil may be taken as $120 \mathrm{kN} / \mathrm{m}^{2}$. Use M 20 grade concrete and Fe 415 grade steel. Take the total thickness of footing as 400 mm . Draw a neat sketch showing the detailing of reinforcement. $\quad 12 \frac{1}{2}$
5. (a) Enlist the various types of foundations and provide a neat sketch of any one type.
(b) Design the cantilever chajja slab, shown in Figure 1. Take live load intensity on the slab as $2 \mathrm{kN} / \mathrm{m}^{2}$. Use M 20 grade concrete and Fe 415 grade steel.

Figure 1
(All dimensions are in mm)
6. (a) Differentiate between earthquake-resistant and earthquake-proof structures.
(b) Discuss various practices which help us make earthquake-resistant structures. Provide neat sketches in your answer. $12 \frac{1}{2}$
7. Write short notes on the following :
(a) Classification of different types of columns $5 \frac{1}{2}$
(b) Precautions to be taken for quality control in
concrete construction
(c) Utility of thumb rules in design 6

