No. of Printed Pages: 3

B.Tech. – VIEP – MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination

00542

December, 2016

BIME-006 : THERMOFLUID ENGINEERING

Time : 3 hours

Maximum Marks : 70

BIME-006

Note : Attempt any **seven** questions. All questions carry equal marks. Use of calculator is allowed.

- 1. (a) What happens when the pressure of a liquid flowing in a passage drops and falls below the vapour pressure at that temperature?
 - (b) How would you classify the regimes of fluid flow on the basis of

. 1

- (i) fluid properties i.e., density and viscosity?
- (ii) compressibility phenomenon, i.e.,
 Mach number of the flow ? 5+5=10

BIME-006

P.T.O.

2. The stream function for a two-dimensional flow is given by

 $\psi \neq 2xy.$

Calculate the velocity at the point P(2, 3). Find the velocity potential function ϕ .

10

10

10

10

3. Calculate

- (a) the pressure gradient along flow,
- (b) the average velocity, and
- (c) the discharge for an oil of viscosity 0.02 Ns/m^2

flowing between two stationary parallel plates 1 m wide maintained 10 mm apart. The velocity midway between the plates is 2 m/sec.

- 4. Prove that the head loss due to friction is equal to one-third of the total head for maximum power transmission through the pipes.
- 5. Two tanks are connected with the help of two pipes in series. The lengths of the pipes are 1000 m and 800 m whereas the diameters are 400 mm and 200 mm respectively. The coefficient of friction for both the pipes is 0-008. The difference of water level in the two tanks is 15 m. Find the rate of flow of water through the pipes, considering all losses.

BIME-006

2

6. Define the following :

- (a) Laminar boundary layer
- (b) Turbulent boundary layer
- (c) Laminar sublayer
- (d) Boundary layer thickness
- (e) Displacement thickness
- 7. A flat plate, $1.5 \text{ m} \times 1.5 \text{ m}$, moves at 50 km/hour in stationary air of density 1.15 kg/m^3 . If the coefficient of drag and lift are 0.15 and 0.75respectively, determine
 - (a) the lift force,
 - (b) the drag force,
 - (c) the resultant force, and
 - (d) the power required to keep the plate in motion. 10
- 8. (a) What are a nozzle and a diffuser?
 - (b) What do you understand by choking in nozzle flows? 5+5=10
- 9. What is a Fanno line ? Why do the end states of a normal shock lie on the Fanno line ?
- 10. A stream of air flows in a duct of 100 mm diameter at a rate of 1 kg/sec. The stagnation temperature is 37°C. At one section of the duct the static pressure is 40 kPa. Calculate the Mach number, velocity and stagnation pressure at this section.

BIME-006

5×2=10

10

10

1,000