# B.Tech. - VIEP - MECHANICAL ENGINEERING (BTMEVI) 

## Term-End Examination <br> December, 2016

## BIME-006(S) : THERMOFLUID ENGINEERING

Time: 3 hours
Maximum Marks : 70
Note: Answer any seven questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. (a) What is the dimensional representation of
(i) Power
(ii) Modulus of elasticity
(iii) Specific weight
(iv) Angular velocity
(v) Viscosity
(b) Is it possible to accelerate a gas to a supersonic velocity in a converging nozzle? Explain.
2. (a) What is a Newtonian fluid? How does the dynamic viscosity of liquids and gases vary with temperature?
(b) What is cavitation ? Also, define 'net positive suction head' and 'required net positive suction head'. Explain how these two quantities are used to ensure that cavitation does not occur in a pump.
3. (a) Prove that the point of maximum entropy on the Fanno line for the adiabatic steady flow of a fluid in a duct corresponds to the sonic velocity $\mathrm{M}_{\mathrm{a}}=1$.
(b) The absolute pressure in water at a depth of 5 m is read to be 145 kPa .

Determine
(i) the local atmospheric pressure, and
(ii) the absolute pressure at a depth of 5 m in a liquid whose specific gravity is 0.78 at the same location. $\quad 5+5$
4. Derive an expression for area velocity relationship for a compressible fluid in the form

$$
\begin{equation*}
\frac{\mathrm{dA}}{\mathrm{~A}}=\frac{\mathrm{dV}}{\mathrm{~V}}\left(\mathrm{~m}^{2}-1\right) \tag{10}
\end{equation*}
$$

5. A steady two-dimensional, incompressible flow field in the xy-plane has a stream function given by

$$
\psi=a x^{2}-b y^{2}+c x+d x y
$$

where $a, b, c$ and $d$ are constants.
(a) Obtain expressions for the velocity components $u$ and $v$.
(b) Verify that the flow field satisfies the incompressible continuity equation.
6. (a) The velocity profile in fully developed laminar flow in a circular pipe of inner radius $R=2 \mathrm{~cm}$, in $\mathrm{m} / \mathrm{s}$, is given by

$$
\mathrm{u}(\mathrm{r})=4\left(1-\frac{\mathrm{r}^{2}}{\mathrm{R}^{2}}\right) .
$$

Determine the average and maximum velocities in the pipe and the volume flow rate.
(b) What is a Pitot tube ? How will you determine the velocity at any point with the help of a Pitot tube?
7. Water flows through a pipe AB of diameter $d_{1}=50 \mathrm{~mm}$ which is in series with a pipe of diameter $\mathrm{d}_{2}=70 \mathrm{~mm}$ in which the mean velocity $V_{2}=3 \mathrm{~m} / \mathrm{sec}$. At C , the pipe forks and one branch CD is of diameter $d_{3}$ such that the mean velocity $\mathrm{V}_{3}=1.5 \mathrm{~m} / \mathrm{sec}$. The other branch CE is of diameter $\mathrm{d}_{4}=35 \mathrm{~mm}$ and the conditions are such that the discharge $Q_{2}$ from $B C$ divides so that $\mathrm{Q}_{4}=\frac{\mathrm{Q}_{3}}{2}$.
Calculate the values of $\mathrm{Q}_{1}, \mathrm{~V}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}, \mathrm{~d}_{3}, \mathrm{Q}_{4}$ and $V_{4}$.
8. Briefly explain the construction and working of a Pelton turbine and derive an expression for maximum hydraulic efficiency.
9. Discuss in general the main operating characteristics of a hydraulic turbine. Which of the Pelton, Francis and Propeller turbines gives better off-design performance and why?
10. Prove that for a steady laminar flow between two fixed parallel plates, the velocity distribution across a section is parabolic and that the average velocity is $\frac{2}{3} \mathrm{rd}$ of the maximum velocity. 10

