B.Tech. MECHANICAL ENGINEERING (COMPUTER INTEGRATED
 MANUFACTURING)

E114 Term-End Examination
December, 2016

BME-028 : FLUID MECHANICS

Time : 3 hours
Maximum Marks : 70

Note: Attempt any seven questions. All questions carry equal marks. Use of scientific calculator is permitted. Assume missing data, if any.

1. (a) One litre of crude oil weighs $9 \cdot 6 \mathrm{~N}$. Calculate its specific weight, density and specific gravity.
(b) The velocity distribution for flow over a flat plate is given by

$$
u=\frac{3}{2} y-y^{3 / 2},
$$

where u is the point velocity in $\mathrm{m} / \mathrm{sec}$ at a distance y metres above the plate. Determine the shear stress at $y=9 \mathrm{~cm}$. Assume dynamic viscosity as 8 poise.
2. (a) Water flows through a pipe $A B$ of $1 \cdot 2 \mathrm{~m}$ diameter at $3 \mathrm{~m} / \mathrm{s}$ and then passes through a pipe BC of 1.5 m diameter as shown in Figure 1. At C, the pipe branches. Branch CD is 0.8 m in diameter and carries one-third of the flow in AB . The flow velocity in branch CE is $2.5 \mathrm{~m} / \mathrm{sec}$. Find the volume rate of flow in AB , the velocity in BC , the velocity in CD and the diameter of CE.

Figure 1
(b) What are the gauge pressure and absolute pressure at a point 3 m below the free surface of a liquid having a density of $1.53 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, if the atmospheric pressure is equivalent to 750 mm of mercury? The specific gravity of mercury is 13.6 and the density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3} .5+5$
3. (a) Show that the following stream function

$$
\psi=6 x-4 y+7 x y+9
$$

represents an irrotational flow. Find its velocity potential.
(b) Differentiate between any two of the following :
(i) Stream function and Velocity potential function
(ii) Stream line and Streak line
(iii) Rotational and Irrotational flows $5+5$
4. (a) Give four examples in everyday life where formation of boundary layer is important. What boundary conditions must be satisfied by the velocity distribution in laminar boundary layer over a flat plate?
(b) The velocity vector in a fluid flow is given by.

$$
V=2 x^{3} \hat{i}-5 x^{2} y \hat{j}+4
$$

Find the velocity and acceleration of a fluid particle at $(1,2,3)$ at time, $t=1$.
5. (a) A venturimeter with a throat diameter of 7.5 cm is installed in a 15 cm diameter pipe. The pressure at the entrance to the meter is 70 kPa (gauge) and it is desired that the pressure at any point should not fall below 2.5 m of water absolute. Determine the maximum flow rate of water through the meter. Take $\mathrm{C}_{\mathrm{d}}=0.97$ and atmospheric pressure as 100 kPa .
(b) For the flows represented by the following stream functions, determine the velocity components u and v :
(i) $\psi=x y$
(ii) $\psi=9 \mathrm{r}^{2} \sin ^{2} \theta$
$5+5$
6. (a) Find the displacement thickness and the momentum thickness for the velocity distribution in the boundary layer given by

$$
\frac{\mathbf{u}}{\mathrm{U}}=2\left(\frac{\mathrm{y}}{\delta}\right)-\left(\frac{\mathrm{y}}{\delta}\right)^{2} .
$$

(b) Experiments were conducted in a wind tunnel with a wind speed of $50 \mathrm{~km} /$ hour on a flat plate of size 2 m long and 1 m wide. The density of air is $1.15 \mathrm{~kg} / \mathrm{m}^{3}$. The coefficients of lift and drag are 0.75 and 0.15 respectively.

Determine
(i) the lift force,
(ii) the drag force, and
(iii) the resultant force.
7. (a) A pump discharges $2 \mathrm{~m}^{3} / \mathrm{sec}$ of water through a pipeline. If the pressure difference between the inlet and the outlet of the pump is equivalent to 10 m of water, what power is being transmitted to the water from the pump?
(b) A paratrooper and a parachute together weigh 1 kN . Estimate its rate of descent, if the parachute diameter is 7 m and the drag coefficient is assumed to be $1 \cdot 2$. Given that the density of air is $1.22 \mathrm{~kg} / \mathrm{m}^{3}$.
8. (a) Glycerine of density $1250 \mathrm{~kg} / \mathrm{m}^{3}$ and viscosity $0.72 \mathrm{~kg} / \mathrm{ms}$ flows through a pipe of 80 mm diameter. If the shear stress at the wall is $300 \mathrm{~N} / \mathrm{m}^{2}$, calculate the
(i) pressure gradient along the flow,
(ii) average velocity in the pipe,
(iii) rate of discharge, and
(iv) Reynolds number of the flow.
(b) A lead sphere of 1.00 mm diameter acquired a terminal velocity of $7 \mathrm{~mm} / \mathrm{sec}$, in an oil while falling down. Assuming that the density of lead is $11000 \mathrm{~kg} / \mathrm{m}^{3}$, and that of the oil is $1200 \mathrm{~kg} / \mathrm{m}^{3}$, compute
(i) the Reynolds number, and
(ii) the kinematic viscosity of the oil.
9. (a) With neat sketches, explain the development of a boundary layer along a thin flat smooth plate held parallel to a uniform flow and explain the salient features.
(b) What are the causes of separation of boundary layer and how can the separation be controlled?
10. Write short notes on any five of the following :
(a) Turbulent Flow
(b) Syphon
(c) Cavitation
(d) Water Hammer
(e) Head Loss
(f) Bernoulli's Equation
(g) Eddy Viscosity
(h) Newtonian Fluids

