B．Tech．MECHANICAL ENGINEERING （COMPUTER INTEGRATED

 MANUFACTURING）

 MANUFACTURING）}

ロロロロ2

Term－End Examination

December， 2016

BME－015 ：ENGINEERING MATHEMATICS－II

Time： 3 hours
Maximum Marks ： 70
Note：Answer any ten questions．All questions carry equal marks．Use of scientific calculator is permitted．

1．Test the convergence of the series

$$
\begin{equation*}
\sum_{n=1}^{\infty}(\sqrt{n+1}-\sqrt{n}) \tag{7}
\end{equation*}
$$

2．Taking $M_{n}=\frac{1}{n(n+1)}$ ，prove that

$$
\sum_{n=1}^{\infty} \frac{\sin (x+n x)}{n(n+1)}
$$

is uniformly convergent for all real values of x ．
3. Find the Fourier series generated by the periodic function $|x|$ for period 2π. Also compute the values of the series for $x=0,2 \pi$ and -3π. 7
4. Find half-range sine series for the function

$$
f(x)= \begin{cases}1 & \text { for } 0<x<\pi / 2 \tag{7}\\ 0 & \text { for } \pi / 2<x<\pi\end{cases}
$$

5. If \mathbf{n} is a positive integer, prove that

$$
(1+\mathrm{i} \sqrt{3})^{\mathrm{n}}-(1-\mathrm{i} \sqrt{3})^{\mathrm{n}}=2^{\mathrm{n}+1} \cos \frac{\mathrm{n} \pi}{3} .
$$

Hence find the value, when $\mathrm{n}=15$.
6. Determine the analytic function $w=u+i v$ if

$$
u-v=(x-y)\left(x^{2}+4 x y+y^{2}\right)
$$

and express w in terms of z.
7. Obtain the first four terms of the Laurent's series expansion of $\frac{e^{z}}{z\left(z^{2}+1\right)}$, for $0<|z|<1$.
8. If $x+\frac{1}{x}=2 \cos \theta, y+\frac{1}{y}=2 \cos \phi$, prove that one of the values of $\frac{x^{m}}{y^{n}}+\frac{y^{n}}{x^{m}}$ is $2 \cos (m \theta-n \phi) . \quad 7$
9. If $\alpha+i \beta=\frac{1}{a+i b}$, prove that

$$
\begin{equation*}
\left(\alpha^{2}+\beta^{2}\right)\left(a^{2}+b^{2}\right)=1 \tag{7}
\end{equation*}
$$

10. Find the value of

$$
\int_{c:|z|=1} \frac{e^{2 z}}{(z+1)^{2}} d z
$$

$$
7
$$

11. Evaluate

$$
\int_{1-i}^{2+i}(2 x+2 i y+3) d z
$$

along
(a) the path $\mathrm{x}=\mathrm{t}+1, \mathrm{y}=2 \mathrm{t}^{2}-1$,
(b) the straight line joining $1-\mathrm{i}$ and $2+\mathrm{i}$.
12. Find the bilinear transformation whose fixed points are 2 and 3.
13. Test the convergence of the series

$$
\begin{equation*}
\frac{1}{1.2 .3}+\frac{3}{2.3 .4}+\frac{5}{3.4 .5}+\ldots \infty \tag{7}
\end{equation*}
$$

14. A horizontal tube is in rotation about a vertical axis with constant angular velocity ω. A sphere inside the tube slides along it without friction, so that the governing equation is $\frac{\mathrm{d}^{2} \mathrm{r}}{\mathrm{dt}^{2}}=\omega^{2} \mathrm{r}$. Find the motion of the sphere if at initial instant it lies on the axis of rotation, i.e., $r(0)=0$ and has velocity one unit along the tube, i.e., $\dot{r}(0)=1$. Thus solve $\frac{d^{2} r}{d t^{2}}=\omega^{2} r$ with $r(0)=0, \dot{r}(0)=1$.
15. Solve any one of the following equations:
(a) $\quad\left(D^{2}+3 D D_{1}+D_{1}^{2}\right) z=e^{x+2 y}$
(b) Find the deflection $u(x, t)$ satisfying IBVP

$$
\begin{aligned}
& u_{t t}-u_{x x}=0 \quad 0<x<1, t>0 \\
& u(0, t)=0=u(1, t), t \geq 0 \\
& u(x, 0)=0,0 \leq x \leq 1
\end{aligned}
$$

$$
\text { and } u_{t}(x, 0)= \begin{cases}x & \text { for } 0 \leq x<\frac{1}{2} \\ 1-x & \text { for } \frac{1}{2} \leq x \leq 1\end{cases}
$$

