No. of Printed Pages: 3

BIEE-013

B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination

10843

December, 2016

BIEE-013 : ELECTRICAL AND ELECTRONICS ENGINEERING MATERIALS

Tin	<i>ie</i> : 3	R hours Maximum Marks .	Maximum Marks : 70			
Note :						
(i)		Attempt any seven questions.				
(ii)		All questions carry equal marks.				
(iii)		Symbols used have their usual meaning.				
(iv)		Use of scientific calculator is allowed.				
1.	(a)	Differentiate between Schottky and Frenkel defects.	5			
	(b)	Find the Miller indices of a plane that makes intercepts 3 on x-axis, 1 on y-axis and 5 on z-axis.	5			
2.	(a)	What is Bragg's law? Define Bragg's planes.	5			
	(b)	Define forbidden gap and differentiate the forbidden energy gap in case of a conductor, an insulator and a semiconductor.	5			

3.	(a)	resistivity of conductors. Deduce the relationship among these factors.	5
	(b)	What is thermionic emission? Discuss thermoelectric effect.	5
4.	(a)	Explain the phenomenon of superconductivity and name any one superconducting material.	5
	(b)	Deduce the conductivity relationship for a p-type semiconductor.	5
5.	Describe the construction and working of a p-n junction diode and explain drift and diffusion currents. Give the expression for diode current (I).		
6.	Discuss Hall effect in detail. How do we identify an unknown piece of semiconductor to be n-type or p-type, with the help of a multimeter?		
7.	Compare between soft and hard magnetic materials. Draw a typical hysteresis curve for a soft magnetic material.		
8.	(a)	Explain magnetostriction effect in brief.	5
	(b)	$0.47~\Omega$ -m. Find the carrier density of Ge at room temperature for electron mobility $(\mu_e) = 0.42~\text{m}^2/\text{volt-sec}$ and hole mobility	<u>.</u>
		$(\mu_{\rm H}) = 0.20 \text{ m}^2/\text{volt-sec}.$	5

- 9. Explain the working mechanism of the following:
 - (a) p-n junction diode
 - (b) FET
- 10. Write short notes on any **two** of the following: $2\times 5=10$
 - (a) Energy Band in Solids
 - (b) Continuity Equation
 - (c) Permanent Magnetic Material
 - (d) Crystal Growth Techniques