# B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING 

(BTECVI)

Term-End Examination

December, 2016

## BIEL-023 : INFORMATION THEORY AND CODING

Time: 3 hours Maximum Marks: 70
Note: Attempt any seven questions. Assume missing data, if any, suitably. Use of scientific calculator is permitted.

1. An information source produces 8 different symbols with probabilities $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}$, $\frac{1}{64}, \frac{1}{128}$ and $\frac{1}{256}$ respectively. These symbols are encoded as $000,001,010,011,100,101,110$ and 111 respectively.
(a) What is the amount of information per symbol?
(b) What are the probabilities of a ' 0 ' \& a ' 1 ' occurring?
(c) What is the efficiency of the code so obtained?
(d) Give an efficient code with the help of the method of Shannon.
2. Let $A=\sum_{n=2}^{\infty}\left(\log \log _{n} 2\right)^{-1}$. Show that the integer random variable $X$ defined by $\operatorname{Pr}(X=n)=\left(A \cdot n \cdot \log _{n} 2^{-1}\right.$, for $n=2,3, \ldots$ has $H(X)=+\infty$.
3. (a) Prove that $H(X, Y)=H(X)+H(Y / X)$.
(b) Let (X, Y) have the following joint distribution:

| $X$ | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\frac{1}{8}$ | $\frac{1}{16}$ | $\frac{1}{32}$ | $\frac{1}{32}$ |
| 2 | $\frac{1}{16}$ | $\frac{1}{8}$ | $\frac{1}{32}$ | $\frac{1}{32}$ |
| 3 | $\frac{1}{16}$ | $\frac{1}{16}$ | $\frac{1}{16}$ | $\frac{1}{16}$ |
| 4 | $\frac{1}{4}$ | 0 | 0 | 0 |

The marginal distribution of $X$ is $\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\right)$ and of $Y$ is $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$. Find $H(X), H(Y), H(X / Y), H(Y / X)$ and $\mathrm{H}(\mathrm{X}, \mathrm{Y})$.
4. Let ( $\mathrm{X}^{\mathrm{n}}, \mathrm{Y}^{\mathrm{n}}$ ) be the sequences of length ' n ' drawn independent and identically distributed according to $P\left(X^{n}, Y^{n}\right)=\prod_{i=1}^{n} P\left(x_{i}, y_{i}\right)$, then prove that
(a) $\quad \operatorname{Pr}\left(\left(\mathrm{X}^{\mathrm{n}}, \mathrm{Y}^{\mathrm{n}}\right) \in \mathrm{A}_{\varepsilon}^{(\mathrm{n})}\right) \rightarrow 1$ as $\mathrm{n} \rightarrow \infty$
(b) $\left[A_{\varepsilon}^{(\mathrm{n})}\right] \leq 2^{\mathrm{n}}(\mathrm{H}(\mathrm{X}, \mathrm{Y})+\varepsilon)$
$5+5$
5. (a) Derive $I\left(X^{n}, Y^{n}\right) \leq n C$ for all $P\left(X^{n}\right)$. Let $Y^{n}$ be the result of passing $X^{n}$ through a discrete memoryless channel.
(b) Prove $\mathrm{C}_{\mathrm{FB}}=\mathrm{C}=\underset{\mathbf{P}(\mathrm{X})}{\operatorname{Max}} \mathrm{I}(\mathrm{X}, \mathrm{Y})$, where $\mathrm{C}_{\mathrm{FB}}$ is feedback capacity.
6. A $(15,11)$ Linear block code can be defined by the following parity array :

$$
\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

(a) Show the Parity-Check Matrix for this code.
(b) List the Co-set leaders from the standard array.
(c) Is this code a perfect code ? Justify your answer.
(d) How many erasures can this code correct? Explain.
7. Draw the state diagram, tree diagram and trellis diagram for $K=3$, rate $\frac{1}{2}$ code generated by $\mathrm{g}_{1}(\mathrm{X})=1+\mathrm{X}+\mathrm{X}^{2}, \mathrm{~g}_{2}(\mathrm{X})=1+\mathrm{X}^{2}$.
8. Use the generator polynomial for (7, 3) R-S code to encode the message 010110111 in systematic form. Use polynomial division to find the parity polynomial and show the resulting code word in polynomial form and binary form.
9. For a fixed error probability, show that the relationship between alphabet size $M$ and required average power for MPSK versus QAM can be expressed as

$$
\begin{equation*}
\frac{\text { Average Power for MPSK }}{\text { Average Power for QAM }} \approx \frac{3 M^{2}}{2(M-1) \pi^{2}} \tag{10}
\end{equation*}
$$

10. The figure given below shows several 16-array symbol constellations :


For the ( 5,11 ) circular constellations, compute the minimum radial distances $r_{1}$ and $r_{2}$ if the minimum distance between each symbol must be 1 unit.10

