No. of Printed Pages : 5

BIEL-023

B.Tech. – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

December, 2016

BIEL-023 : INFORMATION THEORY AND CODING

Time : 3 hours

923

Maximum Marks : 70

Note: Attempt any seven questions. Assume missing data, if any, suitably. Use of scientific calculator is permitted.

1. An information source produces 8 different symbols with probabilities $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, $\frac{1}{32}$,

 $\frac{1}{64}$, $\frac{1}{128}$ and $\frac{1}{256}$ respectively. These symbols are encoded as 000, 001, 010, 011, 100, 101, 110 and 111 respectively.

- (a) What is the amount of information per symbol?
- (b) What are the probabilities of a '0' & a '1' occurring?
- (c) What is the efficiency of the code so obtained?
- (d) Give an efficient code with the help of the method of Shannon.

BIEL-023

1

P.T.O.

10

2. Let $A = \sum_{n=2}^{\infty} (n \log_n 2)^{-1}$. Show that the integer random variable X defined by $Pr(X = n) = (A \cdot n \cdot \log_n 2)^{-1}$, for n = 2, 3, ... has

10

3

7

3. (a) Prove that H(X, Y) = H(X) + H(Y/X).

 $H(X) = + \infty$.

(b) Let (X, Y) have the following joint distribution:

YX	1	2	3	4
1	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{32}$
2	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{32}$	$\frac{1}{32}$
3	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$
4	$\frac{1}{4}$	0	0	0

The marginal distribution of X is $(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8})$ and of Y is $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$. Find H(X), H(Y), H(X/Y), H(Y/X) and H(X, Y).

BIEL-023

2

- 4. Let (Xⁿ, Yⁿ) be the sequences of length 'n' drawn independent and identically distributed according to P(Xⁿ, Yⁿ) = Π_{i=1}ⁿ P(x_i, y_i), then prove that
 (a) Pr((Xⁿ, Yⁿ) ∈ A_ε⁽ⁿ⁾) → 1 as n → ∞
 (b) [A_ε⁽ⁿ⁾] ≤ 2ⁿ (H(X, Y) + ε) 5+5
- 5. (a) Derive $I(X^n, Y^n) \le nC$ for all $P(X^n)$. Let Y^n be the result of passing X^n through a discrete memoryless channel.

(b) Prove
$$C_{FB} = C = Max_{P(X)} I(X, Y)$$
, where C_{FB} is
feedback capacity. 5+5

6. A (15, 11) Linear block code can be defined by the following parity array :

[0	0	1	1]
0	1	0	1
1	0	0	1
0	1	1	0
1	0	1	0
1	1	0	0
0	1	1	1
1	1	1	0
1	1	0	1
1	0	1	.1
1	1	1	1]

BIEL-023

P.T.O.

- (a) Show the Parity-Check Matrix for this code.
- (b) List the Co-set leaders from the standard array.
- (c) Is this code a perfect code ? Justify your answer.
- (d) How many erasures can this code correct ? Explain. 10
- 7. Draw the state diagram, tree diagram and trellis diagram for K = 3, rate $\frac{1}{2}$ code generated by $g_1(X) = 1 + X + X^2$, $g_2(X) = 1 + X^2$. 10
- 8. Use the generator polynomial for (7, 3) R-S code to encode the message 010110111 in systematic form. Use polynomial division to find the parity polynomial and show the resulting code word in polynomial form and binary form.
- 9. For a fixed error probability, show that the relationship between alphabet size M and required average power for MPSK versus QAM can be expressed as

 $\frac{\text{Average Power for MPSK}}{\text{Average Power for QAM}} \approx \frac{3M^2}{2(M-1)\pi^2}.$ 10

10

BIEL-023

4

10. The figure given below shows several 16-array symbol constellations :

For the (5, 11) circular constellations, compute the minimum radial distances r_1 and r_2 if the minimum distance between each symbol must be 1 unit.

10

BIEL-023

1,000